任意Atwood数Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究
The bubble velocity research of Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers
-
摘要: 本文将Layzer气泡模型推广到任意界面Atwood数情形,得到了自洽的微分方程组.该模型描述了气泡从早期的指数增长阶段到气泡以渐近速度上升的非线性阶段的发展过程,给出了Rayleigh-Taylor(RT)和Richtmyer-Meshkov(RM)不稳定性的二维和三维气泡速度渐近解,还求出了二维和三维RT不稳定性气泡顶点附近速度的解析解.
-
关键词:
- Rayleigh-Taylor不稳定性 /
- Richtmyer-Meshkov不稳定性 /
- Atwood数 /
- 非线性
Abstract: We generalize the Layzer's bubble model to the cases of two-dimensional and three-dimensional analytical models of an arbitrary interface Atwood number and obtain self-consistent equations.The generalized model provides a continuous bubble evolution from the earlier exponential growth to the nonlinear regime.The asymptotic bubble velocities are obtained for the Rayleigh-Taylor(RT) and Richtmyer-Meshkov(RM) instabilities.We also report on the two-dimensional and the three-dimensional analytical expressions for the evolution of the RT bubble velocity. -
-
计量
- 文章访问数: 530
- HTML全文浏览数: 66
- PDF下载数: 0
- 施引文献: 0