噪声诱导的二维复时空系统的同步研究
Noise-induced synchronization of two-dimensional complex spatiotemporal systems
-
摘要: 研究了一类噪声诱导的二维复时空系统的同步问题.首先讨论了二维复Ginzburg-Laudau(CGL)方程随时间和空间变化的时空混沌特性;其次,研究了时空噪声驱动下CGL系统的同步问题.理论上利用线性稳定性分析,得到了常数激励下CGL系统达到稳定态的临界强度;结合噪声的随机性和非零均值特性,揭示了噪声诱导同步的机理;并从理论上和数值上分别给出了达到同步所需要的控制参数和噪声强度满足的条件,实现了两个非耦合CGL系统的完全同步.结果表明,数值模拟和理论分析有很好的一致性.
-
关键词:
- 同步 /
- 时空噪声 /
- 时空混沌 /
- 复Ginzburg-Laudau方程
Abstract: A type of noise-induced synchronization in two-dimensional (2D) complex spatiotemporal system is studied in this paper. First, we employ a 2D complex Ginzburg-Laudau equation (CGL) to present spatiotemporal chaos. Then the synchronization in the CGL equation driven by spatiotemporal noise is studied. Theoretically, the critical control intensity is obtained by linear stability analysis of a constant forced CGL system. Combining with randomness and non-zero mean of the noise, we reveal the mechanism of synchronization and give the required conditions for control parameters and noise intensity resulting in synchronization theoretically and numerically. A complete synchronization in a pair of uncoupled CGL equations is achieved. A good agreement between the theoretical analyses and the numerical results is obtained. -
-
计量
- 文章访问数: 499
- HTML全文浏览数: 158
- PDF下载数: 0
- 施引文献: 0