基于径向基神经网络预测的混沌时间序列嵌入维数估计方法
Methodology of estimating the embedding dimension in chaos time series based on the prediction performanceof radial basis function neural networks
-
摘要: 根据Takens定理,研究了混沌时间序列相空间重构嵌入维数的选取问题.提出了基于径向基函数神经网络预测模型性能的嵌入维数估计方法,即根据嵌入维数与混沌时间序列预测模型性能的变化关系来确定嵌入维数.通过对几种典型混沌动力学系统的数值验证,结果表明该方法能够确定出合适的相空间重构嵌入维数.Abstract: We have studied the methodology of estimating the embedding dimension for phase space reconstruction of chaotic time series according to the Takens theorem. We present an approach to the estimation of the embedding dimension based on the prediction of nonlinear performance. That is, we determine the embedding dimension by considering the variation of the performance of prediction model of chaotic time series with embedding dimension. Numerical simulations verify that the method is applicable for determining an appropriate embedding dimension.
-
-
计量
- 文章访问数: 718
- HTML全文浏览数: 102
- PDF下载数: 0
- 施引文献: 0
首页
登录
注册


下载: