滑移铁电:理论、实验及潜在应用

上一篇

下一篇

杨柳, 吴梦昊. 2024: 滑移铁电:理论、实验及潜在应用, 物理, 53(11): 741-750. doi: 10.7693/wl20241102
引用本文: 杨柳, 吴梦昊. 2024: 滑移铁电:理论、实验及潜在应用, 物理, 53(11): 741-750. doi: 10.7693/wl20241102
YANG Liu, WU Meng-Hao. 2024: Sliding ferroelectricity: theory, experiment, and potential applications, Physics, 53(11): 741-750. doi: 10.7693/wl20241102
Citation: YANG Liu, WU Meng-Hao. 2024: Sliding ferroelectricity: theory, experiment, and potential applications, Physics, 53(11): 741-750. doi: 10.7693/wl20241102

滑移铁电:理论、实验及潜在应用

    通讯作者: 杨柳,email:yangliu1@ctgu.edu.cn;  吴梦昊,email:wmh1987@hust.edu.cn
  • 基金项目:

    国家自然科学基金(批准号:22073034)资助项目

Sliding ferroelectricity: theory, experiment, and potential applications

    Corresponding authors: YANG Liu ;  WU Meng-Hao
  • 摘要: 近年来,二维铁电受到了广泛关注,尤其是滑移铁电理论指出,大多数二维材料都可以通过层间堆叠产生垂直极化,并在电场下通过层间滑移翻转,这种独特的铁电机制已在多种范德瓦耳斯体系中得到了实验的广泛验证。文章综述了近期滑移铁电的理论和实验进展及其潜在应用:其独特的滑移机制使翻转势垒空前降低同时又保证了热稳定性,还可使信息写入高速低耗且抗疲劳;滑移铁电性与二维材料磁、光、超导、谷电子、拓扑性质、声子手性等丰富物性的耦合使它们可以被非易失性电控,相关的莫尔铁电、金属铁电、非线性霍尔效应等也极大丰富了铁电物理,为探索新奇物理现象和开发新型电子器件提供了广阔平台。目前已实现了滑移铁电单晶的大规模生长,基于滑移铁电的晶体管、神经形态忆阻器、光电子等器件的优越性能也得到验证,未经优化的翻转速度和抗疲劳性已能和目前成熟的铁电器件最优性能相比拟,未来前景可期。
  • 加载中
  • Dawber M,Rabe K M,Scott J F. Rev. Mod. Phys.,2005,77:1083
    Scott J F. Science,2007,315:954
    Wei X K,Domingo N,Sun Y et al. Adv. Energy Mater.,2022,12: 2201199
    Fong D D,Stephenson G B,Streiffer S K et al. Science,2004, 304:1650
    Junquera J,Ghosez P. Nature,2003,422:506
    Wang C,You L,Cobden D et al. Nat. Mater.,2023,22:542
    Wu M. ACS Nano,2021,15:9229
    Chang K,Liu J,Lin H et al. Science,2016,353:274
    Xue F,Hu W,Lee K C et al. Adv. Funct. Mater.,2018,28: 1803738
    Zhou Y,Wu D,Zhu Y et al. Nano Lett.,2017,17:5508
    Cui C,Hu W J,Yan X et al. Nano Lett.,2018,18:1253
    Liu F,You L,Seyler K L et al. Nat. Commun.,2016,7:1
    Li L,Wu M. ACS Nano,2017,11:6382
    Wu M,Li J. Proc. Natl. Acad. Sci.,2021,118:e2115703118
    Yasuda K,Wang X,Watanabe K et al. Science,2021,372:1458
    Vizner Stern M,Waschitz Y,Cao W et al. Science,2021,372: 1462
    Lv M,Sun X,Chen Y et al. Adv. Mater.,2022,34:2203990
    Yasuda K,Zalys-Geller E,Wang X et al. Science,2024,385:53
    Sui F,Jin M,Zhang Y et al. Nat. Commun.,2023,14:36
    Sui F,Li H,Qi R et al. Nat. Commun.,2024,15:3799
    Wang Y,Zeng Z,Tian Z et al. Adv. Mater.,2024,36:2410696
    Bian R,Cao G,Pan E et al. Nano Lett.,2023,23:4595
    Weston A,Castanon E G,Enaldiev V et al. Nat. Nanotechnol., 2022,17:390
    Wang X,Yasuda K,Zhang Y et al. Nat. Nanotechnol.,2022,17: 367
    Rogée L,Wang L,Zhang Y et al. Science,2022,376:973
    Meng P,Wu Y,Bian R et al. Nat. Commun.,2022,13:7696
    Deb S,Cao W,Raab N et al. Nature,2022,612:465
    Liu Y,Liu S,Li B et al. Nano Lett.,2022,22:1265
    Yang D,Liang J,Wu J et al. Nat. Commun.,2024,15:1389
    Bian R,He R,Pan E et al. Science,2024,385:57
    Ko K H Y,Yuk A,Engelke R et al. Nat. Mater.,2023,22:992
    Zhang S,Liu Y,Sun Z et al. Nat. Commun.,2023,14:6200
    Fei Z,Zhao W,Palomaki T A et al. Nature,2018,560:336
    Sharma P,Xiang F X,Shao D F et al. Sci. Adv.,2019,5: eaax5080
    de la Barrera S C,Cao Q,Gao Y et al. Nat. Commun.,2021,12: 5298
    Xiao J,Wang Y,Wang H et al. Nat. Phys.,2020,16:1028
    Jindal A,Saha A,Li Z et al. Nature,2023,613:48
    Wan Y,Hu T,Mao X et al. Phys. Rev. Lett.,2022,128:067601
    Li F,Fu J,Xue M et al. Front. Phys.,2023,18:53305
    Niu Y,Li L,Qi Z et al. Nat. Commun.,2023,14:5578
    Miao L P,Ding N,Wang N et al. Nat. Mater.,2022,21:1158
    Ji J,Yu G,Xu C et al. Phys. Rev. Lett.,2023,130:146801
    Zheng Z,Ma Q,Bi Z et al. Nature,2020,588:71
    Niu R,Li Z,Han X et al. Nat. Commun.,2022,13:6241
    Yang L,Wu M. Adv. Funct. Mater.,2023,33:2301105
    Yang L,Ding S,Gao J et al. Phys. Rev. Lett.,2023,131:096801
    Atri S S,Cao W,Alon B et al. Adv. Phys. Res.,2024,3:2300095
    Ding N,Ye H,Dong S. Phys. Rev. B,2024,110:024115
    Zhong T,Zhang H,Wu M. Research,7:0428
    Zhang C,Zhang Z,Wu Z et al. J. Phys. Chem. Lett.,2024,15: 8049
    Wang Z,Gui Z,Huang L. Phys. Rev. B,2023,107:035426
    Xu J,Yang Z,Liu W et al. J. Phys.:Condens. Matter,2024,36: 205505
    Hou C,Shen Y,Wang Q et al. ACS Nano,2024,18:16923
    Tang P,Bauer G E W. Phys. Rev. Lett.,2023,130:176801
    Marmolejo-Tejada J M,Roll J E,Poudel S P et al. Nano Lett., 2022,22:7984
    He R,Zhang B,Wang H et al. Acta Mater.,2024,262:119416
    Liu X,Pyatakov A P,Ren W. Phys. Rev. Lett.,2020,125:247601
    Liu K,Ma X,Xu S et al. npj Comput. Mater.,2023,9:16
    Yu S,Xu Y,Dai Y et al. Phys. Rev. B,2024,109:L100402
    Li H,Zhu W. Nano Lett.,2023,23:10651
    Wu Y,Tong J,Deng L et al. Nano Lett.,2023,23:6226
    Ma J,Luo X,Zheng Y. npj Comput. Mater.,2024,10:102
    Zhang T,Xu X,Huang B et al. npj Comput. Mater.,2022,8:64
    Zhong T,Ren Y,Zhang Z et al. J. Mater. Chem. A,2021,9: 19659
    Xiao R C,Gao Y,Jiang H et al. npj Comput. Mater.,2022,8:138
    Zhang C,Guo P,Zhou J. Nano Lett.,2022,22:9297
    Zhou J. npj 2D Mater. Appl.,2022,6:15
    Wang H,Qian X. npj Comput. Mater.,2019,5:119
    Wang E,Zeng H,Duan W et al. Phys. Rev. Lett.,2024,132: 266802
    Feng Y,Dai Y,Huang B et al. Nano Lett.,2023,23:5367
    Peng R,Zhang T,He Z et al. Phys. Rev. B,2023,107:085411
    Sheng H,Fang Z,Wang Z. Phys. Rev. B,2023,108:104109
    Zhang J,Dai Y,Zhang T. Appl. Phys. Lett.,2024,124:252906
    Chen H,Wang Q,Feng X et al. Nano Lett.,2023,23:11266
    Chen X,Ding X,Gou G et al. Nano Lett.,2024,24:3089
    Jafari H,Barts E,Przybysz P et al. Phys. Rev. Mater.,2024,8: 024005
    Ding N,Chen J,Gui C et al. Phys. Rev. Mater.,2021,5:084405
    Wang J,Li X,Ma X et al. Phys. Rev. Lett.,2024,133:126801
    Yang Q,Meng S. Phys. Rev. Lett.,2024,133:136902
    Tao Z G,Deng S,Prezhdo O V et al. J. Am. Chem. Soc.,2024, 146:24016
    Sun W,Wang W,Yang C et al. Nano Lett.,2024,24:11179
    Zhu Y,Long R,Fang W H. Nano Lett.,2023,23:10074
    Enaldiev V V,Ferreira F,Magorrian S J et al. 2D Mater.,2021, 8:025030
    Zhong T T,Gao Y,Ren Y et al. WIREs Comput. Mol. Sci., 2023,13:e1682
    Ji J,Yu G,Xu C et al. Nat. Commun.,2024,15:135
    Sheng Y,Wu M,Liu J M. Adv. Funct. Mater.,2024,n/a:2404665
    Yang Q,Wu M,Li J. J. Phys. Chem. Lett.,2018,9:7160
    Liang J,Yang D,Wu J et al. Phys. Rev. X,2022,12:041005
    van Winkle M,Dowlatshahi N,Khaloo N et al. Nat. Nanotechnol.,2024,19:751
    Woods C R,Ares P,Nevison-Andrews H et al. Nat. Commun., 2021,12:347
    Wang L,Qi J,Wei W et al. Nature,2024,629:74
    Qin B,Ma C,Guo Q et al. Science,2024,385:99
    Jiang H,Li L,Wu Y et al. Adv. Mater.,2024,36:2400670
    Kang K,Zhao W,Zeng Y et al. Nat. Nanotechnol.,2023,18:861
    Deb S,Krause J,Faria Junior P E et al. Nat. Commun.,2024,15: 7595
    Yang T H,Liang B W,Hu H C et al. Nat. Electron.,2024,7:29
    Peng Y,Han G,Xiao W et al. Nanoscale Res. Lett.,2019,14:115
    Park J Y,Yang K,Lee D H et al. J. Appl. Phys.,2020,128: 240907
    Cao W,Deb S,Stern M V et al. Adv. Mater.,2024,36:2400750
    Lv M,Wang J,Tian M et al. Nat. Commun.,2024,15:295
    Du S,Yang W,Gao H et al. Adv. Mater.,2024,36:2404177
    Wang H,Yang J,Wang Z et al. Appl. Phys. Rev.,2024,11: 011402
    Li X,Qin B,Wang Y et al. 2024,arXiv:2401.16150v1
    Yang D,Wu J,Zhou B T et al. Nat. Photonics,2022,16:469
    Wu J,Yang D,Liang J et al. Sci. Adv.,2022,8:eade3759
    Sun Y,Xu S,Xu Z et al. Nat. Commun.,2022,13:5391
  • 加载中
计量
  • 文章访问数:  454
  • HTML全文浏览数:  454
  • PDF下载数:  57
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-09-30

滑移铁电:理论、实验及潜在应用

    通讯作者: 杨柳,email:yangliu1@ctgu.edu.cn; 
    通讯作者: 吴梦昊,email:wmh1987@hust.edu.cn
  • 1 三峡大学物理系 湖北省弱磁探测工程技术研究中心 宜昌 443002;
  • 2 华中科技大学物理学院 武汉 430074
基金项目: 

摘要: 近年来,二维铁电受到了广泛关注,尤其是滑移铁电理论指出,大多数二维材料都可以通过层间堆叠产生垂直极化,并在电场下通过层间滑移翻转,这种独特的铁电机制已在多种范德瓦耳斯体系中得到了实验的广泛验证。文章综述了近期滑移铁电的理论和实验进展及其潜在应用:其独特的滑移机制使翻转势垒空前降低同时又保证了热稳定性,还可使信息写入高速低耗且抗疲劳;滑移铁电性与二维材料磁、光、超导、谷电子、拓扑性质、声子手性等丰富物性的耦合使它们可以被非易失性电控,相关的莫尔铁电、金属铁电、非线性霍尔效应等也极大丰富了铁电物理,为探索新奇物理现象和开发新型电子器件提供了广阔平台。目前已实现了滑移铁电单晶的大规模生长,基于滑移铁电的晶体管、神经形态忆阻器、光电子等器件的优越性能也得到验证,未经优化的翻转速度和抗疲劳性已能和目前成熟的铁电器件最优性能相比拟,未来前景可期。

English Abstract

参考文献 (106)

目录

/

返回文章
返回