热超构材料学:热学这棵老树绽放的新花
Thermal metamaterials:A new blossom on the ancient tree of thermotics
-
摘要:
热学作为物理学的重要分支,其研究历史源远流长。虽然人们对热本质的认知已趋于完善,但在热流调控方面仍面临重大挑战,难以满足当前能源危机背景下日益增长的热管理需求。2008年,基于变换热学理论提出的稳态热隐身开创了热超构材料学这一新兴研究领域,为解决这一难题提供了全新的思路。经过17年的蓬勃发展,热超构材料学领域已取得丰硕成果。文章将系统介绍该领域的研究进展:从最初的热隐身研究,逐步拓展到热聚集、热伪装和热幻像等多种功能;从单纯的热流调控,发展到实现拓扑物态等丰富物理效应;研究范畴也从热传导体系延伸至包含热对流和热辐射的复合系统,相继实现了非互易、非厄米等新奇物理效应。相关研究也催生了地下掩体红外热防护、日间辐射制冷等重要应用。作为“热学”这棵老树开出的新花,热超构材料学不仅在基础研究方面展现出独特价值,更为解决实际工程问题提供了全新的解决方案。
Abstract:As an important branch of physics, the study of thermotics boasts a long and illustrious history. Despite the increasingly sophisticated understanding of the nature of heat, significant challenges persist in heat flow manipulation, making it difficult to meet the ever-growing demands for thermal management amidst the current energy crisis. In 2008, the advent of steady-state thermal cloaking based on transformation thermotics ushered in a new research field—thermal metamaterials, offering a novel approach to address this challenge. Seventeen years of vigorous development has witnessed fruitful results, which will be delineated in this article. Starting from initial studies on thermal cloaking, topics have gradually expanded to include diverse functionalities such as thermal concentrators, thermal camouflage, and thermal illusions. Now, transitioning from pure heat flow manipulation to the realization of rich physical effects such as topological states of matter, research has extended from purely conductive heat transfer systems to composite systems encompassing convective and radiative heat transfer, successively achieving exotic physical effects such as non-reciprocity and non-Hermiticity, and giving rise to important applications such as daytime radiative cooling. As a new blossom on the “old tree”of thermotics, thermal metamaterials not only demonstrate unique merit in basic research but also provide innovative solutions to practical engineering problems.
-
Key words:
- thermal metamaterials /
- thermal cloak /
- topology /
- non-reciprocity /
- non-Hermiticity /
- daytime radiative cooling .
-
-
李椿,章立源,钱尚武. 热学(第三版). 北京:高等教育出版社, 2015 Veselago V G. Sov. Phys. Usp.,1968,10:509 Leonhardt U. Science,2006,312:1777 Pendry J B,Schurig D,Smith D R. Science,2006,312:1780 Fan C Z,Gao Y,Huang J P. Appl. Phys. Lett.,2008,92:251907 Zhang Z,Xu L,Qu T et al. Nat. Rev. Phys.,2023,5:218 Yang F,Zhang Z,Xu L et al. Rev. Mod. Phys.,2024,96:015002 Yang F B,Huang J P. Diffusionics:Diffusion Process Controlled by Diffusion Metamaterials. Singapore:Springer,2024 Yang S,Wang J,Dai G et al. Phys. Rep.,2021,908:1 Xu L J,Huang J P. Transformation Thermotics and Extended Theories:Inside and Outside Metamaterials. Singapore:Springer, 2023 Huang J P. Theoretical Thermotics:Transformation Thermotics and Extended Theories for Thermal Metamaterials. Singapore: Springer,2020 黄吉平. 热能调控技术:基于变换热学等热超构材料理论的设计、仿真与实验. 北京:高等教育出版社,2021 Li Y,Li W,Han T et al. Nat. Rev. Mater.,2021,6:488 Fan C,Wu C L,Wang Y et al. Phys. Rep.,2024,1077:1 Li Y,Xu L,Qiu C W. Thermal Metamaterials:Controlling the Flow of Heat. Singapore:World Scientific Publishing,2025 Sklan S R,Li B. Nat. Sci. Rev.,2018,5:138 Chen T Y,Weng C N,Chen J S. Appl. Phys. Lett.,2008,93: 114103 Guenneau S,Amra C,Veynante D. Opt. Exp.,2012,20:8207 Sklan S R,Bai X,Li B et al. Sci. Rep.,2016,6:32915 Narayana S,Sato Y. Phys. Rev. Lett.,2012,108:214303 Schittny R,Kadic M,Guenneau S et al. Phys. Rev. Lett.,2013, 110:195901 Li Y,Shen X,Wu Z et al. Phys. Rev. Lett.,2015,115:195503 Shen X,Li Y,Jiang C et al. Phys. Rev. Lett.,2016,117:055501 陶文铨. 传热学(第六版). 北京:高等教育出版社,2024 Han T,Bai X,Gao D et al. Phys. Rev. Lett.,2014,112:054302 Yu G X,Lin Y F,Zhang G Q et al. Front. Phys.,2011,6:70 Li Y,Shen X,Huang J et al. Phys. Lett. A,2016,380:1641 Shen X,Li Y,Jiang C et al. Appl. Phys. Lett.,2016,109:031907 Jin P,Liu J,Xu L et al. Proc. Natl. Acad. Sci. USA,2023,120: e2217068120 Tan H,Zhao Y,Jin P et al. Proc. Natl. Acad. Sci. USA,2025, 122:e2424421122 Han T,Bai X,Thong J T L et al. Adv. Mater.,2014,26:1731 Yang T,Bai X,Gao D et al. Adv. Mater.,2015,27:7752 Yang T,Su Y,Xu W et al. Appl. Phys. Lett.,2016,109:121905 Wang R,Shang J,Huang J. Int. J. Therm. Sci.,2018,131:14 Chen Y,Shen X,Huang J. Eur. Phys. J. Appl. Phys.,2015,70: 20901 Hu R,Zhou S,Li Y et al. Adv. Mater.,2018,30:1707237 Hasan M Z,Kane C L. Rev. Mod. Phys.,2010,82:3045 Liu Z,Jin P,Lei M et al. Nat. Rev. Phys.,2024,6:554 Xu L,Wang J,Dai G et al. Int. J. Heat Mass Transf.,2021,165: 120659 Yoshida T,Hatsugai Y. Sci. Rep.,2021,11:888 Hu H,Han S,Yang Y et al. Adv. Mater.,2022,34:2202257 Qi M,Wang D,Cao P C et al. Adv. Mater.,2022,34:2202241 Liu Z,Cao P C,Xu L et al. Phys. Rev. Lett.,2024,132:176302 Guenneau S,Amra C. Opt. Exp.,2013,21:6578 Yang F,Tian B,Xu L et al. Phys. Rev. Appl.,2020,14:054024 Li J Y,Gao Y,Huang J P. J. Appl. Phys.,2010,108:1780 Ma Y,Liu Y,Raza M et al. Phys. Rev. Lett.,2014,113:205501 Stedman T,Woods L M. Sci. Rep.,2017,7:6988 Lei M,Wang J,Dai G et al. EPL,2021,135:54003 Fujii G,Akimoto Y,Takahashi M. Appl. Phys. Lett.,2018,112: 061108 Fujii G,Akimoto Y. Appl. Phys. Lett.,2019,115:174101 Fujii G,Akimoto Y. Int. J. Heat Mass Transf.,2020,159:120082 Sha W,Xiao M,Zhang J et al. Nat. Commun.,2021,12:7228 Jin P,Yang S,Xu L et al. Int. J. Heat Mass Transf.,2021,172: 121177 Ji Q,Qi Y,Liu C et al. Int. J. Heat Mass Transf.,2022,189: 122716 Jin P,Xu L,Xu G et al. Adv. Mater.,2024,36:2305791 Torrent D,Poncelet O,Batsale J C. Phys. Rev. Lett.,2018,120: 125501 Camacho M,Edwards B,Engheta N. Nat. Commun.,2020,11: 3733 Xu L,Xu G,Huang J et al. Phys. Rev. Lett.,2022,128:145901 Xu L,Xu G,Li J et al. Phys. Rev. Lett.,2022,129:155901 Li J,Li Y,Cao P C et al. Nat. Commun.,2022,13:167 Fleury R,Sounas D L,Sieck C F et al. Science,2014,343:516 Xu L,Huang J,Ouyang X. Appl. Phys. Lett.,2021,118:221902 Ju R,Cao P C,Wang D et al. Adv. Mater.,2024,36:2309835 Qiu Y,Yang F,Huang J et al. Phys. Fluids,2024,36:103632 Ashida Y,Gong Z,Ueda M. Adv. Phys.,2020,69:249 Li Y,Peng Y G,Han L et al. Science,2019,364:170 Xu G,Li Y,Li W et al. Phys. Rev. Lett.,2021,127:105901 Xu G,Li W,Zhou X et al. Proc. Natl. Acad. Sci. USA,2022, 119:e2110018119 Xu G,Yang Y,Zhou X et al. Nat. Phys.,2022,18:450 Xu G,Zhou X,Yang S et al. Nat. Commun.,2023,14:3252 Gao H,Xu G,Zhou X et al. Rep. Prog. Phys.,2024,87:090501 Liu Z,Cao P C,Li Y et al. Phys. Rev. Appl.,2024,21:064035 Liu Z,Huang J,Li Y. Phys. Rev. Appl.,2025,23:014059 Li Y,Zhu K J,Peng Y G et al. Nat. Mater.,2019,18:48 Xu G,Dong K,Li Y et al. Nat. Commun.,2020,11:6028 Li J,Li Y,Cao P C et al. Adv. Mater.,2020,32:2003823 Li J,Li Y,Wang W et al. Opt. Exp.,2020,28:25894 Dai G,Shang J,Huang J. Phys. Rev. E,2018,97:022129 Dai G,Huang J. J. Appl. Phys.,2018,124:235103 Raman A P,Anoma M A,Zhao L et al. Nature,2014,515:540 Zhai Y,Ma Y,David S N et al. Science,2017,355:1062 Xie F,Jin W,Nolen J R et al. Science,2024,386:788 Xu L,Dai G,Huang J. Phys. Rev. Appl.,2020,13:024063 Xu L,Yang S,Dai G et al. ES Energy Environ.,2020,7:65 Li Y,Bai X,Yang T et al. Nat. Commun.,2018,9:273 Peng Y G,Li Y,Cao P C et al. Adv. Funct. Mater.,2020,30: 2002061 Wang J,Yang F,Xu L et al. Phys. Rev. Appl.,2020,14:014008 Jin P,Liu J,Yang F et al. Research,2023,6:0222 Xu L,Dai G,Yang F et al. Nat. Comput. Sci.,2024,4:532 Zhu C,Bamidele E A,Shen X et al. Chem. Rev.,2024,124:4258 黄吉平,庄鹏飞. 现代应用物理,2024,15:050101 Lei M,Jin P,Zhou Y et al. Proc. Natl. Acad. Sci. USA,2024, 121:e2410041121 Xu L,Liu J,Xu G et al. Proc. Natl. Acad. Sci. USA,2023,120: e2305755120 Xu L,Dai G,Wang G et al. Phys. Rev. E,2020,102:032140 Liu Z,Huang J. Chin. Phys. Lett.,2023,40:110305 夏舸,杨立,寇蔚等. 国防科技大学学报,2018,40:126 周海,李保权,王怀超等. 国防科技大学学报,2023,45:74 王亮,童忠诚,吴俊. 国防科技大学学报,2024,46:99 黄吉平. 热隐身:地下掩体的红外热防护. 湖南:国防科技大学出版社,即将出版 Dede E M,Zhou F,Schmalenberg P et al. J. Electron. Packaging,2018,140:010904 张文琪,汪剑波. 现代应用物理,2023,14:20503 牟春晖,陈娟. 现代应用物理,2024,15:10502 Zhou X,Xu X,Huang J. Nat. Commun.,2023,14:5449 Qiu Y,Nomura M,Zhang Z et al. Front. Phys.,2025,20: 065500 -
计量
- 文章访问数: 42
- HTML全文浏览数: 42
- PDF下载数: 20
- 施引文献: 0