[1] 刘瑜, 杜长龙, 付林, 等. 煤块冲击破碎速度研究 [J]. 振动与冲击, 2011, 30(3): 18–21. doi: 10.3969/j.issn.1000-3835.2011.03.005 LIU Y, DU C L, FU L, et al. Impact crushing velocity of lump coal [J]. Journal of Vibration and Shock, 2011, 30(3): 18–21. doi: 10.3969/j.issn.1000-3835.2011.03.005
[2] 李艳焕, 邵良杉, 徐振亮. 煤粒冲击粉碎临界速度的数值实验分析 [J]. 振动与冲击, 2017, 36(5): 227–230. LI Y H, SHAO L B, XU Z L. Numerical analysis for critical velocity of coal impacting and comminution [J]. Journal of Vibration and Shock, 2017, 36(5): 227–230.
[3] 沈位刚, 赵涛, 唐川, 等. 落石冲击破碎特征的加载率相关性研究 [J]. 工程科学与技术, 2018(1): 43–50. SHEN W G, ZHAO T, TANG C, et al. Loading rate dependency of impact induced rock fragmentation during rockfall [J]. Advanced Engineering Sciences, 2018(1): 43–50.
[4] 房丽娜, 马正先, 李慧, 等. 粉碎设备及技术的发展历程与研究进展 [J]. 有色矿冶, 2005(Suppl 1): 178–180. FANG L N, MA Z X, LI H, et al. Development history and research progress of crushing equipment and technology [J]. Non-Ferrous Mining and Metallurgy, 2005(Suppl 1): 178–180.
[5] ANDREWS E W, KIM K S. Threshold conditions for dynamic fragmentation of glass particles [J]. Mechanics of Materials, 1999, 31(11): 689–703. doi: 10.1016/S0167-6636(99)00024-1
[6] ANDREWS E W, KIM K S. Threshold conditions for dynamic fragmentation of ceramic particles [J]. Mechanics of Materials, 1998, 29(11): 161–180.
[7] SALMAN A D, GORHAM D A. The fracture of glass spheres [J]. Powder Technology, 2000, 107(1): 179–185.
[8] SALMAN A D, GORHAM D A, VERBA A. A study of solid particle failure under normal and oblique impact [J]. Wear, 1995, 186(95): 92–98.
[9] SALMAN A D, REYNOLDS G K, FU J S, et al. Descriptive classification of the impact failure modes of spherical particles [J]. Powder Technology, 2004, 143(26): 19–30.
[10] CHAU K T, WEI X X, WONG R H C, et al. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses [J]. Mechanics of Materials, 2000, 32(9): 543–554. doi: 10.1016/S0167-6636(00)00026-0
[11] WU S Z, CHAU K T, YU T X. Crushing and fragmentation of brittle spheres under double impact test [J]. Powder Technology, 2004, 143/144: 41–55. doi: 10.1016/j.powtec.2004.04.028
[12] 易洪昇, 徐松林, 单俊芳, 等. 不同加载速度下脆性颗粒的破坏特性 [J]. 爆炸与冲击, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10 YI H S, XU S L, SHAN J F, et al. Fracture characteristics of brittle particles at different loading velocities [J]. Explosion and Shock Waves, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10
[13] POTYONDY D O. A bonded-particle model for rock [J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8): 1329–1364.
[14] SHEN W G, ZHAO T, CROSTA G B, et al. Analysis of impact-induced rock fragmentation using a discrete element approach [J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 98: 33–38.
[15] CARMONA H A, WITTEL F K, KUN F, et al. Fragmentation processes in impact of spheres [J]. Physical Review E, 2008, 77(5): 051302.
[16] XIA M, ZHAO C B. Simulation of rock deformation and mechanical characteristics using clump parallel-bond models [J]. Journal of Central South University, 2014, 21(7): 2885–2893. doi: 10.1007/s11771-014-2254-3
[17] YANG B, JIAO Y, LEI S. A study on the effects of microparameters on macroproperties for specimens created by bonded particles [J]. Engineering Computations, 2006, 23(6): 607–631. doi: 10.1108/02644400610680333
[18] PARK J W, SONG J J. Numerical simulation of a direct shear test on a rock joint using a bonded-particle model [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(8): 1315–1328.
[19] 熊迅, 李天密, 马棋棋, 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟 [J]. 力学学报, 2018, 50(3): 178–188. XIONG X, LI T M, MA Q Q, et al. Discrete element simulation of the high velocity expansion and fragmentation of quartz glass rings [J]. Chinese Journal Theoretical and Applied Mechanics, 2018, 50(3): 178–188.
[20] KNIGHT C G, SWAIN M V, CHAUDHRI M M. Impact of small steel spheres on glass surfaces [J]. Journal of Materials Science, 1977, 12(8): 1573–1586. doi: 10.1007/BF00542808