[1] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541–547.
[2] 周琳,王子豪,文鹤鸣. 简论金属材料JC本构模型的精确性 [J]. 高压物理学报, 2019, 33(4): 042101. ZHOU L, WANG Z H, WEN H M. On the accuracy of the Johnson-Cook constitutive model for metals [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101.
[3] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
[4] ASAY J R, LIPKIN J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material [J]. Journal of Applied Physics, 1978, 49(7): 4242–4247. doi: 10.1063/1.325340
[5] ASAY J R, CHHABILDAS L C, DANDEKAR D P. Shear strength of shock-loaded polycrystalline tungsten [J]. Journal of Applied Physics, 1980, 51(9): 4774–4783. doi: 10.1063/1.328309
[6] CHHABILDAS L C, ASAY J R, BARKER L M. Shear strength of tungsten under shock and quasi-isentropic loading to 250 GPa:SAND-88-0306 [R].Sandia National Laboratories,1988.
[7] 陈青山, 苗应刚, 郭亚洲, 等. 比较93钨合金材料的3种本构模型 [J]. 高压物理学报, 2017, 31(6): 753–760. doi: 10.11858/gywlxb.2017.06.010 CHEN Q S, MIAO Y G, GUO Y Z, et al. Comparative analysis of 3 constitutive models for 93 tungsten alloy [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 753–760. doi: 10.11858/gywlxb.2017.06.010
[8] 朱锡. 921A钢动态屈服应力的实验研究 [J]. 海军工程学院学报, 1991(2): 43–48. ZHU X. Experimental study of dynamic yielding stress on “921A” steel [J]. Journal of Naval University of Engineering, 1991(2): 43–48.
[9] 张林, 张祖根, 秦晓云, 等. D6A、921和45钢的动态破坏与低压冲击特性 [J]. 高压物理学报, 2003, 17(4): 305–310. doi: 10.3969/j.issn.1000-5773.2003.04.011 ZHANG L, ZHANG Z G, QIN X Y, et al. Dynamic fracture and mechanical property of D6A, 921 and 45 steels under low shock pressure [J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305–310. doi: 10.3969/j.issn.1000-5773.2003.04.011
[10] HU J, ZHOU X, TAN H, et al. Successive phase transitions of tin under shock compression [J]. Applied Physics Letters, 2008, 92(11): 111905. doi: 10.1063/1.2898891
[11] 谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007.
[12] 谭华. 高压声速测量与卸载路径 [J]. 爆轰波与冲击波, 2003, 2: 60–70.
[13] 王贵林, 王治, 张朝辉, 等. 磁驱动准等熵压缩下单晶氟化锂的光学特性 [J]. 强激光与粒子束, 2014, 26(4): 210–216. WANG G L, WANG Z, ZHANG Z H, et al. Optical properties of single-crystal lithium fluoride window under magnetically driven quasi-isentropic compression [J]. High Power Laser and Particle Beams, 2014, 26(4): 210–216.
[14] MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980.
[15] 华劲松. 高温高压下钨合金的本构方程研究 [D]. 绵阳: 中国工程物理研究院, 1999.