| [1] | TAYLOR G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I [J]. Proceedings of the Royal Society of London Series A, 1950, 201(1065): 192–196. |
| [2] | RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. doi: 10.1002/cpa.3160130207 |
| [3] | CAMPBELL E M, HUNT J T, BLISS E S, et al. Nova experimental facility [J]. Review of Scientific Instruments, 1986, 57(8): 2101–2106. doi: 10.1063/1.1138755 |
| [4] | DIMONTE G, TERRONES G, CHERNE F J, et al. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities [J]. Physical Review Letters, 2011, 107(26): 264502. doi: 10.1103/PhysRevLett.107.264502 |
| [5] | PARK H S, LORENZ K T, CAVALLO R M, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate [J]. Physical Review Letters, 2010, 104(13): 135504. doi: 10.1103/PhysRevLett.104.135504 |
| [6] | PARK H S, REMINGTON B A, BECKER R C, et al. Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures [J]. Physics of Plasmas, 2010, 17(5): 056314. doi: 10.1063/1.3363170 |
| [7] | NUCKOLLS J, WOOD L, THIESSEN A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications [J]. Nature, 1972, 239(5368): 139–142. doi: 10.1038/239139a0 |
| [8] | MCCRORY R L, MONTIERTH L, MORSE R L, et al. Nonlinear evolution of ablation-driven Rayleigh-Taylor instability [J]. Physical Review Letters, 1981, 46(5): 336–339. doi: 10.1103/PhysRevLett.46.336 |
| [9] | LINDL J D, MEAD W C. Two-dimensional simulation of fluid instability in laser-fusion pellets [J]. Physical Review Letters, 1975, 34(20): 1273–1276. doi: 10.1103/PhysRevLett.34.1273 |
| [10] | KIFONIDIS K, PLEWA T, SCHECK L, et al. Non-spherical core collapse supernovae-II. the late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A [J]. Astronomy & Astrophysics, 2006, 453(2): 661–678. |
| [11] | MAC LOW M M, ZAHNLE K. Explosion of comet Shoemaker-Levy 9 on entry into the Jovian atmosphere [J]. The Astrophysical Journal, 1994, 434: L33–L36. doi: 10.1086/187565 |
| [12] | SHUVALOV V V, ARTEMIEVA N A. Numerical modeling of Tunguska-like impacts [J]. Planetary and Space Science, 2002, 50(2): 181–192. doi: 10.1016/S0032-0633(01)00079-4 |
| [13] | KAUS B J P, PODLADCHIKOV Y Y. Forward and reverse modeling of the three-dimensional viscous Rayleigh-Taylor instability [J]. Geophysical Research Letters, 2001, 28(6): 1095–1098. doi: 10.1029/2000GL011789 |
| [14] | MOLNAR P, HOUSEMAN G A, CONRAD C P. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer [J]. Geophysical Journal International, 1998, 133(3): 568–584. doi: 10.1046/j.1365-246X.1998.00510.x |
| [15] | MILES J W. Taylor instability of a flat plate, General atomic division of general dynamics: GAMD-7335 [R]. 1966. |
| [16] | WHITE G N. A one degree of freedom model for the Tayloy instability of an ideally plastic metal plate: LA-5225-MS [R]. Los Alamos, NM: Los Alamos National Laboratory, 1973. |
| [17] | ROBINSON A C, SWEGLE J W. Acceleration instability in elastic-plastic solids. II. analytical techniques [J]. Journal of Applied Physics, 1989, 66(7): 2859–2872. doi: 10.1063/1.344191 |
| [18] | PIRIZ A R, CELA J J L, CORTAZAR O D, et al. Rayleigh-Taylor instability in elastic solids [J]. Physical Review E, 2005, 72(5): 056313. doi: 10.1103/PhysRevE.72.056313 |
| [19] | PIRIZ A R, LÓPEZ CELA J J, TAHIR N A. Rayleigh-Taylor instability in elastic-plastic solids [J]. Journal of Applied Physics, 2009, 105(11): 116101. doi: 10.1063/1.3139267 |
| [20] | PIRIZ A R, CELA J J L, TAHIR N A. Linear analysis of incompressible Rayleigh-Taylor instability in solids [J]. Physical Review E, 2009, 80(4): 046305. doi: 10.1103/PhysRevE.80.046305 |
| [21] | BAI X B, WANG T, ZHU Y X, et al. Expansion of linear analysis of Rayleigh-Taylor interface instability of metal materials [J]. World Journal of Mechanics, 2018, 8(4): 94–106. doi: 10.4236/wjm.2018.84008 |
| [22] | BARNES J F, BLEWETT P J, MCQUEEN R G, et al. Taylor instability in solids [J]. Journal of Applied Physics, 1974, 45(2): 727–732. doi: 10.1063/1.1663310 |
| [23] | LORENZ K T, EDWARDS M J, GLENDINNING S G, et al. Accessing ultrahigh-pressure, quasi-isentropic states of matter [J]. Physics of Plasmas, 2005, 12(5): 056309. doi: 10.1063/1.1873812 |
| [24] | BARNES J F, JANNEY D H, LONDON R K, et al. Further experimentation on Taylor instability in solids [J]. Journal of Applied Physics, 1980, 51(9): 4678–4679. doi: 10.1063/1.328339 |
| [25] | LINDQUIST M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations [R]. Livermore, CA: Lawrence Livermore National Laboratory, 2007. |
| [26] | DE FRAHAN M T H, BELOF J L, CAVALLO R M, et al. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability [J]. Journal of Applied Physics, 2015, 117(22): 225901. doi: 10.1063/1.4922336 |
| [27] | WANG T, BAI J S, CAO R Y, et al. Numerical investigations of perturbation growth in aluminum flyer driven by explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032301. |
| [28] | OLSON R T, CERRETA E K, MORRIS C, et al. The effect of microstructure on Rayleigh-Taylor instability growth in solids [J]. Journal of Physics: Conference Series, 2014, 500(11): 112048. doi: 10.1088/1742-6596/500/11/112048 |
| [29] | 何长江, 周海兵, 杭义洪. 爆轰驱动金属铝界面不稳定性的数值分析 [J]. 中国科学G辑, 2009, 39(9): 1170–1173. HE C J, ZHOU H B, HANG Y H. Numerical study on the instability of metal Al driven by detonation [J]. Science in China (Series G), 2009, 39(9): 1170–1173. |
| [30] | 郝鹏程, 冯其京, 胡晓棉. 内爆加载金属界面不稳定性的数值分析 [J]. 爆炸与冲击, 2016, 36(6): 739–744. doi: 10.11883/1001-1455(2016)06-0739-06 HAO P C, FENG Q J, HU X M. A numerical study of the instability of the metal shell in the implosion [J]. Explosion and Shock Waves, 2016, 36(6): 739–744. doi: 10.11883/1001-1455(2016)06-0739-06 |
| [31] | 刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究 [J]. 物理学报, 2014, 63(15): 155201. doi: 10.7498/aps.63.155201 LIU J, FENG Q J, ZHOU H B. Simulation study of interface instability in metals driven by cylindrical implosion [J]. Acta Physica Sinica, 2014, 63(15): 155201. doi: 10.7498/aps.63.155201 |
| [32] | SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field [J]. Physics of Plasmas, 2010, 17(5): 056303. doi: 10.1063/1.3333505 |
| [33] | MCBRIDE R D, SLUTZ S A, JENNINGS C A, et al. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator [J]. Physical Review Letters, 2012, 109(13): 135004. doi: 10.1103/PhysRevLett.109.135004 |
| [34] | PARK H S, ARSENLIS A, BARTON N R. Stabilization of the Rayleigh-Taylor instability by material strength at high pressure and high strain rates [C]//16th International Workshop on the Physics of Compressible Turbulent Mixing. Marseilles, France, 2018. |
| [35] | REMINGTON B A, PARK H S, PRISBREY S T, et al. Progress towards materials science above 1 000 GPa (10 Mbar) on the NIF laser: LLNL-CONF-411555 [R]. Livermore, CA: Lawrence Livermore National Laboratory, 2009. |
| [36] | JENSEN B J, CHERNE F J, PRIME M B, et al. Jet formation in cerium metal to examine material strength [J]. Journal of Applied Physics, 2015, 118(19): 195903. doi: 10.1063/1.4935879 |
| [37] | BELOF J L, CAVALLO R M, OLSON R T, et al. Rayleigh-Taylor strength experiments of the pressure-induced α→ε→α′ phase transition in iron [C]//AIP Conference Proceedings. American Institute of Physics, 2012, 1426(1): 1521–1524. |
| [38] | LINDQUIST M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations [C]//LEGRAND M, VANDENBOOMGAERDE M. 10th International Workshop on Physics of Compressible Turbulent Mixing. Paris, France, 2006. |