| [1] | BIRCH F. Density and composition of mantle and core [J]. Journal of Geophysical Research, 1964, 69: 4377–4388. doi: 10.1029/JZ069i020p04377 |
| [2] | DREIBUS G, WÄNKE H. Mars, a volatile-rich planet [J]. Meteoritics, 1985, 20: 367–381. |
| [3] | ANTONANGELI D, MORARD G, SCHMERR N C, et al. Toward a mineral physics reference model for the Moon’s core [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 3916–3919. doi: 10.1073/pnas.1417490112 |
| [4] | MCDONOUGH W F. Treatise on geochemistry: compositional model for the Earth’s core [M]. New York: Elsevier, 2003: 547–568. |
| [5] | FEI Y, PREWITT C T, MAO H K, et al. Structure and density of FeS at high pressure and high temperature and the internal structure of Mars [J]. Science, 1995, 268(5219): 1892–1894. doi: 10.1126/science.268.5219.1892 |
| [6] | STEENSTRA E S, LIN Y H, RAI N, et al. Carbon as the dominant light element in the lunar core [J]. American Mineralogist, 2017, 102(1): 92–97. doi: 10.2138/am-2017-5727 |
| [7] | SKÁLA R, CÍSAŘOVÁ I. Crystal structure of meteoritic schreibersites: determination of absolute structure [J]. Physics and Chemistry of Minerals, 2005, 31(10): 721–732. doi: 10.1007/s00269-004-0435-6 |
| [8] | BUSECK P R. Phosphide from metorites: barringerite, a new iron-nickel mineral [J]. Science, 1969, 165(3889): 169–171. doi: 10.1126/science.165.3889.169 |
| [9] | BRITVIN S N, RUDASHEVSKY N S, KRIVOVICHEV S V, et al. Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure [J]. American Mineralogist, 2002, 87(8/9): 1245–1249. |
| [10] | PRATESI G. Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite [J]. American Mineralogist, 2006, 91(2/3): 451–454. |
| [11] | REED S J B. Perryite in the kota-kota and south Oman enstatite chondrites [J]. Mineralogical Magazine and Journal of the Mineralogical Society, 1968, 36(282): 850–854. doi: 10.1180/minmag.1968.036.282.13 |
| [12] | MA C, BECKETT J R, ROSSMAN G R. Discovery of a new phosphide mineral, monipite (MoNiP), in an Allende Type B1 CAI [C]//72nd Meeting of the Meteoritical Society, 2009, 44(Suppl 7): A127. |
| [13] | 梅清风, 杨进辉. 地球早期演化的Hf-W同位素制约 [J]. 岩石学报, 2018, 34(1): 207–216. MEI Q F, YANG J H. Hf-W isotopic constraints on early evolution of the Earth [J]. Acta Petrologica Sinica, 2018, 34(1): 207–216. |
| [14] | WOOD B J, WALTER M J, WADE J. Accretion of the Earth and segregation of its core [J]. Nature, 2006, 441(7095): 825–833. doi: 10.1038/nature04763 |
| [15] | YIN Y, LI Z M, ZHAI S M. The phase diagram of the Fe-P binary system at 3 GPa and implications for phosphorus in the lunar core [J]. Geochimica et Cosmochimica Acta, 2019, 254: 54–66. doi: 10.1016/j.gca.2019.03.037 |
| [16] | STEWART A J, SCHMIDT M W. Sulfur and phosphorus in the Earth’s core: the Fe-P-S system at 23 GPa [J]. Geophysical Research Letters, 2007, 34(13): L13201. |
| [17] | SHA L K. Whitlockite solubility in silicate melts: some insights into lunar and planetary evolution [J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3217–3236. doi: 10.1016/S0016-7037(00)00420-8 |
| [18] | STEENSTRA E S, VAN WESTRENEN W. Lunar core composition [M]//Encyclopedia of Lunar Science. Cham: Springer International Publishing, 2016: 1–6. |
| [19] | GU T T, FEI Y W, WU X, et al. Phase stabilities and spin transitions of Fe3(S1– xP x) at high pressure and its implications in meteorites [J]. American Mineralogist, 2016, 101(1): 205–210. doi: 10.2138/am-2016-5466 |
| [20] | GU T T, FEI Y W, WU X, et al. High-pressure behavior of Fe3P and the role of phosphorus in planetary cores [J]. Earth and Planetary Science Letters, 2014, 390: 296–303. doi: 10.1016/j.jpgl.2014.01.019 |
| [21] | HE X J, GUO J Z, WU X, et al. Compressibility of natural schreibersite up to 50 GPa [J]. Physics and Chemistry of Minerals, 2019, 46(1): 91–99. doi: 10.1007/s00269-018-0990-x |
| [22] | NISAR J, AHUJA R. Structure behavior and equation of state (EOS) of Ni2P and (Fe1– xNi x)2P (allabogdanite) from first-principles calculations [J]. Earth and Planetary Science Letters, 2010, 295(3/4): 578–582. |
| [23] | DERA P, LAVINA B, BORKOWSKI L A, et al. High-pressure polymorphism of Fe2P and its implications for meteorites and Earth’s core [J]. Geophysical Research Letters, 2008, 35(10): L10301. |
| [24] | DERA P, LAVINA B, BORKOWSKI L A, et al. Structure and behavior of the barringerite Ni end-member, Ni2P, at deep Earth conditions and implications for natural Fe-Ni phosphides in planetary cores [J]. Journal of Geophysical Research, 2009, 114(B3): B03201. |
| [25] | WU X, MOOKHERJEE M, GU T T, et al. Elasticity and anisotropy of iron-nickel phosphides at high pressures [J]. Geophysical Research Letters, 2011, 38(20): L20301. |
| [26] | DUBROVINSKY L, DUBROVINSKAIA N, BYKOVA E, et al. The most incompressible metal osmium at static pressures above 750 gigapascals [J]. Nature, 2015, 525: 226–229. doi: 10.1038/nature14681 |
| [27] | HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan [J]. High Pressure Research, 1996, 14(4/5/6): 235–248. |
| [28] | MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673. doi: 10.1029/JB091iB05p04673 |
| [29] | SETO Y, NISHIO-HAMANE D, NAGAI T, et al. Development of a software suite on X-ray diffraction experiments [J]. The Review of High Pressure Science and Technology, 2010, 20(3): 269–276. doi: 10.4131/jshpreview.20.269 |
| [30] | TOBY B H. EXPGUI, a graphical user interface for GSAS [J]. Journal of Applied Crystallography, 2001, 34(2): 210–213. doi: 10.1107/S0021889801002242 |
| [31] | ANGEL R J, ALVARO M, GONZALEZ-PLATAS J. EosFit7c and a Fortran module (library) for equation of state calculations [J]. Zeitschrift für Kristallographie: Crystalline Materials, 2014, 229(5): 1165–1176. |
| [32] | FUJII H, HŌKABE T, FUJIWARA H, et al. Magnetic properties of single crystals of the system (Fe1-xNix)2P [J]. Journal of the Physical Society of Japan, 1978, 44(1): 96–100. doi: 10.1143/JPSJ.44.96 |
| [33] | MAEDA Y, TAKASHIMA Y. Mössbauer studies of FeNiP and related compounds [J]. Journal of Inorganic and Nuclear Chemistry, 1973, 35(6): 1963–1969. doi: 10.1016/0022-1902(73)80134-4 |
| [34] | BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809. doi: 10.1103/PhysRev.71.809 |
| [35] | ANGEL R J. Equations of state [J]. Reviews in Mineralogy and Geochemistry, 2000, 41(1): 35–59. doi: 10.2138/rmg.2000.41.2 |
| [36] | KLOTZ S, CHERVIN J C, MUNSCH P, et al. Hydrostatic limits of 11 pressure transmitting media [J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075413. doi: 10.1088/0022-3727/42/7/075413 |
| [37] | DEWAELE A, LOUBEYRE P. Pressurizing conditions in helium-pressure-transmitting medium [J]. High Pressure Research, 2007, 27(4): 419–429. doi: 10.1080/08957950701659627 |
| [38] | RUEFF J P, RAYMOND S, YARESKO A, et al. Pressure-induced f-electron delocalization in the U-based strongly correlated compounds UPd3 and UPd2Al3: resonant inelastic X-ray scattering and first-principles calculations [J]. Physical Review B, 2007, 76(8): 085113. doi: 10.1103/PhysRevB.76.085113 |
| [39] | DEWAELE A, LOUBEYRE P, OCCELLI F, et al. Quasihydrostatic equation of state of iron above 2 Mbar [J]. Physical Review Letters, 2006, 97(21): 215504. doi: 10.1103/PhysRevLett.97.215504 |
| [40] | CHEN B, PENWELL D, KRUGER M. The compressibility of nanocrystalline nickel [J]. Solid State Communications, 2000, 115(4): 191–194. doi: 10.1016/S0038-1098(00)00160-5 |
| [41] | WILLIAMS J G, BOGGS D H, YODER C F, et al. Lunar rotational dissipation in solid body and molten core [J]. Journal of Geophysical Research: Planets, 2001, 106(E11): 27933–27968. doi: 10.1029/2000JE001396 |
| [42] | WILLIAMS J G, KONOPLIV A S, BOGGS D H, et al. Lunar interior properties from the GRAIL mission [J]. Journal of Geophysical Research: Planets, 2014, 119(7): 1546–1578. doi: 10.1002/2013JE004559 |
| [43] | LOGNONNÉ P, JOHNSON C L. Treatise in Geophysics: planetary seismology [M]. Oxford, UK: Elsevier, 2007: 69–122. |
| [44] | WIECZOREK M A. The constitution and structure of the lunar interior [J]. Reviews in Mineralogy and Geochemistry, 2006, 60(1): 221–364. doi: 10.2138/rmg.2006.60.3 |
| [45] | RAI N, VAN WESTRENEN W. Lunar core formation: new constraints from metal-silicate partitioning of siderophile elements [J]. Earth and Planetary Science Letters, 2014, 388: 343–352. doi: 10.1016/j.jpgl.2013.12.001 |
| [46] | STEENSTRA E S, RAI N, KNIBBE J S, et al. New geochemical models of core formation in the Moon from metal-silicate partitioning of 15 siderophile elements [J]. Earth and Planetary Science Letters, 2016, 441: 1–9. doi: 10.1016/j.jpgl.2016.02.028 |
| [47] | WEBER R C, LIN P Y, GARNERO E J, et al. Seismic detection of the lunar core [J]. Science, 2011, 331(6015): 309–312. doi: 10.1126/science.1199375 |
| [48] | MORARD G, BOUCHET J, RIVOLDINI A, et al. Liquid properties in the Fe-FeS system under moderate pressure: tool box to model small planetary cores [J]. American Mineralogist, 2018, 103: 1770–1779. |
| [49] | JING Z C, WANG Y B, KONO Y, et al. Sound velocity of Fe-S liquids at high pressure: implications for the Moon’s molten outer core [J]. Earth and Planetary Science Letters, 2014, 396: 78–87. doi: 10.1016/j.jpgl.2014.04.015 |
| [50] | CHI H, DASGUPTA R, DUNCAN M S, et al. Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean: implications for the abundance and origin of volatiles in Earth, Mars, and the Moon [J]. Geochimica et Cosmochimica Acta, 2014, 139: 447–471. doi: 10.1016/j.gca.2014.04.046 |
| [51] | RIGHTER K, GO B M, PANDO K A, et al. Phase equilibria of a low S and C lunar core: implications for an early lunar dynamo and physical state of the current core [J]. Earth and Planetary Science Letters, 2017, 463: 323–332. doi: 10.1016/j.jpgl.2017.02.003 |
| [52] | RIGHTER K, DRAKE M J. Core formation in Earth’s Moon, Mars, and Vesta [J]. Icarus, 1996, 124(2): 513–529. doi: 10.1006/icar.1996.0227 |
| [53] | NEWSOM H E, DRAKE M J. Experimental investigation of the partitioning of phosphorus between metal and silicate phases: implications for the Earth, Moon, and Eucrite parent body [J]. Geochimica et Cosmochimica Acta, 1983, 47(1): 93–100. doi: 10.1016/0016-7037(83)90093-5 |
| [54] | CHANTEL J, JING Z C, XU M, et al. Pressure dependence of the liquidus and solidus temperatures in the Fe-P binary system determined by in situ ultrasonics: implications to the solidification of Fe-P liquids in planetary cores [J]. Journal of Geophysical Research: Planets, 2018, 123(5): 1113–1124. doi: 10.1029/2017JE005376 |
| [55] | MININ D A, SHATSKIY A F, LITASOV K D, et al. The Fe-Fe2P phase diagram at 6 GPa [J]. High Pressure Research, 2019, 39(1): 50–68. doi: 10.1080/08957959.2018.1562552 |
| [56] | CHEN B, GAO L, FUNAKOSHI K, et al. Thermal expansion of iron-rich alloys and implications for the Earth’s core [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9162–9167. doi: 10.1073/pnas.0610474104 |
| [57] | TSUJINO N, NISHIHARA Y, NAKAJIMA Y, et al. Equation of state of γ-Fe: reference density for planetary cores [J]. Earth and Planetary Science Letters, 2013, 375: 244–253. doi: 10.1016/j.jpgl.2013.05.040 |
| [58] | FISCHER R A, CAMPBELL A J, CARACAS R, et al. Equations of state in the Fe-FeSi system at high pressures and temperatures [J]. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 2810–2827. doi: 10.1002/2013JB010898 |