| [1] | LARSEN J C. Low frequency (0.1-6.0 CPD) electromagnetic study of deep mantle electrical conductivity beneath the Hawaiian islands [J]. Geophysical Journal International, 1975, 43(1): 17–46. doi: 10.1111/j.1365-246X.1975.tb00626.x |
| [2] | FILLOUX J H. Ocean-floor magnetotelluric sounding over North Central Pacific [J]. Nature, 1977, 269(5626): 297–301. doi: 10.1038/269297a0 |
| [3] | OLDENBURG D W. Conductivity structure of oceanic upper mantle beneath the Pacific plate [J]. Geophysical Journal International, 1981, 65(2): 359–394. doi: 10.1111/j.1365-246X.1981.tb02717.x |
| [4] | SHANKLAND T J, O’CONNELL R J, WAFF H S. Geophysical constraints on partial melt in the upper mantle [J]. Reviews of Geophysics, 1981, 19(3): 394–406. doi: 10.1029/RG019i003p00394 |
| [5] | EVANS R L, HIRTH G, BABA K, et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates [J]. Nature, 2005, 437(7056): 249–252. doi: 10.1038/nature04014 |
| [6] | NAIF S, KEY K, CONSTABLE S, et al. Melt-rich channel observed at the lithosphere-asthenosphere boundary [J]. Nature, 2013, 495(7441): 356–359. doi: 10.1038/nature11939 |
| [7] | GAILLARD F, MALKI M, IACONO-MARZIANO G, et al. Carbonatite melts and electrical conductivity in the asthenosphere [J]. Science, 2008, 322(5906): 1363–1365. doi: 10.1126/science.1164446 |
| [8] | KARATO S I. The role of hydrogen in the electrical conductivity of the upper mantle [J]. Nature, 1990, 347(6290): 272–273. doi: 10.1038/347272a0 |
| [9] | WANG D, MOOKHERJEE M, XU Y, et al. The effect of water on the electrical conductivity of olivine [J]. Nature, 2006, 443(7114): 977–980. doi: 10.1038/nature05256 |
| [10] | YOSHINO T, MATSUZAKI T, YAMASHITA S, et al. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere [J]. Nature, 2006, 443(7114): 973–976. doi: 10.1038/nature05223 |
| [11] | YOSHINO T, MATSUZAKI T, SHATSKIY A, et al. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle [J]. Earth and Planetary Science Letters, 2009, 288(1/2): 291–300. |
| [12] | POE B T, ROMANO C, NESTOLA F, et al. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa [J]. Physics of the Earth and Planetary Interiors, 2010, 181(3/4): 103–111. |
| [13] | DUBA A G, SHANKLAND T J. Free carbon & electrical conductivity in the Earth’s mantle [J]. Geophysical Research Letters, 1982, 9(11): 1271–1274. doi: 10.1029/GL009i011p01271 |
| [14] | LASTOVICKOVÁ M. A review of laboratory measurements of the electrical conductivity of rocks and minerals [J]. Physics of the Earth and Planetary Interiors, 1991, 66(1/2): 1–11. |
| [15] | DAI L, KARATO S. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine [J]. Earth and Planetary Science Letters, 2014, 408: 79–86. doi: 10.1016/j.jpgl.2014.10.003 |
| [16] | DAI L, KARATO S. The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions [J]. Physics of the Earth and Planetary Interiors, 2014, 232: 51–56. doi: 10.1016/j.pepi.2014.03.010 |
| [17] | YANG X. Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle [J]. Earth and Planetary Science Letters, 2012, 317: 241–250. |
| [18] | XU Y, SHANKLAND T J, DUBA A G. Pressure effect on electrical conductivity of mantle olivine [J]. Physics of the Earth and Planetary Interiors, 2000, 118(1/2): 149–161. |
| [19] | YOSHINO T, SHIMOJUKU A, SHAN S, et al. Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8): 205–220. |
| [20] | YOSHINO T, ZHANG B, RHYMER B, et al. Pressure dependence of electrical conductivity in forsterite [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 158–171. doi: 10.1002/2016JB013555 |
| [21] | BORUP K A, FISCHER K F, BROWN D R, et al. Measuring anisotropic resistivity of single crystals using the van der Pauw technique [J]. Physical Review B, 2015, 92(4): 045210. doi: 10.1103/PhysRevB.92.045210 |
| [22] | SHEN Y, KUMAR R S, PRAVICA M, et al. Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells [J]. Review of Scientific Instruments, 2004, 75(11): 4450–4454. doi: 10.1063/1.1786355 |
| [23] | MAO H K, XU J A, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673 |
| [24] | 刘锦, 孙樯. 硅油作为压力计的拉曼光谱研究 [J]. 光谱学与光谱分析, 2010, 30(9): 2390–2392. doi: 10.3964/j.issn.1000-0593(2010)09-2390-03 LIU J, SUN Q. Raman spectroscopic study on silicone fluid as pressure gauge [J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2390–2392. doi: 10.3964/j.issn.1000-0593(2010)09-2390-03 |
| [25] | 王晓霞, 李志慧, 陈晨, 等. 硅油的高压拉曼散射 [J]. 高等学校化学学报, 2014, 35(11): 2384–2389. WANG X X, LI Z H, LI C, et al. High pressure Raman spectra of silicone oil [J]. Chemical Journal of Chinese Universities, 2014, 35(11): 2384–2389. |
| [26] | ROBERTS J J, TYBURCZY J A. Frequency dependent electrical properties of polycrystalline olivine compacts [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B10): 16205–16222. doi: 10.1029/91JB01574 |
| [27] | SINCLAIR D C, WEST A R. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance [J]. Journal of Applied Physics, 1989, 66(8): 3850–3856. doi: 10.1063/1.344049 |
| [28] | JOHNSON D. ZView: a software program for IES analysis. Version 2.8 [CP/OL]. Southern Pines, NC: Scribner Associates [2019-03-05]. http://www.scribner.com. |
| [29] | ZHA C, DUFFY T S, DOWNS R T, et al. Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa [J]. Earth and Planetary Science Letters, 1998, 159(1/2): 25–33. |
| [30] | DU FRANE W L, TYBURCZY J A. Deuterium-hydrogen exchange in olivine: implications for point defects and electrical conductivity [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3): Q03004. |
| [31] | GODDAT A, PEYRONNEAU J, POIRIER J P. Dependence on pressure of conduction by hopping of small polarons in minerals of the Earth’s lower mantle [J]. Physics and Chemistry of Minerals, 1999, 27(2): 81–87. doi: 10.1007/s002690050243 |
| [32] | KATSURA T, SATO K, ITO E. Electrical conductivity of silicate perovskite at lower-mantle conditions [J]. Nature, 1998, 395(6701): 493–495. doi: 10.1038/26736 |
| [33] | LIN J F, WEIR S T, JACKSON D D, et al. Electrical conductivity of the lower-mantle ferropericlase across the electronic spin transition [J]. Geophysical Research Letters, 2007, 34(16): L16305. |
| [34] | OHTA K, HIROSE K, ONODA S, et al. The effect of iron spin transition on electrical conductivity of (Mg,Fe)O magnesiowüstite [J]. Proceedings of the Japan Academy Series B, 2007, 83(3): 97–100. doi: 10.2183/pjab.83.97 |
| [35] | YOSHINO T, ITO E, KATSURA T, et al. Effect of iron content on the spin transition pressure of ferropericlase [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B4): B04202. |
| [36] | DOBSON D P, RICHMOND N C, BRODHOLT J P. A high-temperature electrical conduction mechanism in the lower mantle phase (Mg, Fe)1- xO [J]. Science, 1997, 275(5307): 1779–1781. doi: 10.1126/science.275.5307.1779 |
| [37] | NEAL S L, MACKIE R L, LARSEN J C, et al. Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean [J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8229–8242. doi: 10.1029/1999JB900447 |
| [38] | TARITS P, HAUTOT S, PERRIER F. Water in the mantle: results from electrical conductivity beneath the French Alps [J]. Geophysical Research Letters, 2004, 31(6): 265–282. |
| [39] | JUNG H, KARATO S. Water-induced fabric transitions in olivine [J]. Science, 2001, 293: 1460–1463. doi: 10.1126/science.1062235 |