[1] |
Honniball C I, Lucey P G, Li S, et al. Molecular water detected on the sunlit moon by SOFIA[J]. Nature Astronomy,2021,5(2):121−127
|
[2] |
Orosei R, Lauro S E, Pettinelli E, et al. Radar evidence of subglacial liquid water on Mars[J]. Science,2018,361(6401):490−493 doi: 10.1126/science.aar7268
|
[3] |
Mitrofanov I G, Sanin A B, Boynton W V, et al. Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND[J]. Science,2010,330(6003):483−486 doi: 10.1126/science.1185696
|
[4] |
Trautner R, Reiss P, Kargl G. A drill-integrated miniaturized device for detecting ice in lunar regolith: the PROSPECT permittivity sensor[J]. Measurement Science and Technology,2021,32(12):125117 doi: 10.1088/1361-6501/ac261a
|
[5] |
Hoffman J H, Chaney R C, Hammack H. Phoenix mars mission-the thermal evolved gas analyzer[J]. Journal of the American Society for Mass Spectrometry,2008,19(10):1377−1383 doi: 10.1016/j.jasms.2008.07.015
|
[6] |
Ren Z Y, Guo M R, Cheng Y J, et al. A review of the development and application of space miniature mass spectrometers[J]. Vacuum,2018,155:108−117 doi: 10.1016/j.vacuum.2018.05.048
|
[7] |
Dong M, Sun W J, Wu C Y, et al. A UHV standard with option to be used as partial pressure standard[J]. Metrologia,2020,57(2):025017 doi: 10.1088/1681-7575/ab6744
|
[8] |
Dong M, Sun W J, Wu C Y, et al. Study on the characteristics of quadrupole mass spectrometer by the UHV partial pressure standard[J]. Vacuum,2021,191:110357 doi: 10.1016/j.vacuum.2021.110357
|
[9] |
Verchovsky S, Anand M, Barber S. Quantitative evolved gas analysis of Apollo lunar soils[C]. European Lunar Symposium (ELS), 2020, 12-14 May 2020, Virtual
|
[10] |
Verchovsky A В, Abernethy F A J, Anand M, et al. Quantitative evolved gas analysis: winchcombe in comparison with other CM2 meteorites[J]. Meteoritics & Planetary Science,2024,59(5):1145−1169
|
[11] |
O'Hanlon J F. A user’s guide to vacuum technology (3rd edition)[M]. Hoboken: John Wiley & Sons, 2003: 398−400
|
[12] |
Dylla H F, Manos D M, LaMarche P H. Correlation of outgassing of stainless steel and aluminum with various surface treatments[J]. Journal of Vacuum Science & Technology A,1993,11(5):2623−2636
|
[13] |
Berman A. Water vapor in vacuum systems[J]. Vacuum,1996,47(4):327−332 doi: 10.1016/0042-207X(95)00246-4
|
[14] |
包立红. 基于lTS-90的饱和水蒸气压表(0~100℃)[J]. 计量技术,1993(8):26−29 (in Chinese)
Bao L H. Saturated water vapor pressure gauge based on lTS-90(~100℃)[J]. Measurement Technique,1993(8):26−29
|
[15] |
Nilab A, Thomas T Barnes III, Joel A, et al. LightWAVE |Developing mass spectrometry for water quantitation and volatiles analysis from in-situ lunar regolith[R]. Houston: Kennedy Space Center, 2022: 1
|
[16] |
Yoshida H, Ebina T, Arai K, et al. Development of water vapor transmission rate measuring device using a quadrupole mass spectrometer and standard gas barrier films down to the 10−6 g m−2 day−1 level[J]. Review of Scientific Instruments,2017,88(4):043301 doi: 10.1063/1.4980074
|
[17] |
Yoshida H, Arai K, Hirata M, et al. New leak element using sintered stainless steel filter for in-situ calibration of ionization gauges and quadrupole mass spectrometers[J]. Vacuum,2012,86(7):838−842 doi: 10.1016/j.vacuum.2011.02.013
|
[18] |
Moore B A, Ruthberg S. RADC/NBS (Rome air development center/national bureau of standards) workshop. moisture measurement and control for semiconductor devices, 3[C]. Workshop Held in Gaithersburg, 1984: 2−4
|
[19] |
Pernicka J C. The value of RGA in manufacturing semiconductors[R]. Eurofins Qualitech: EAG, 2017: 1−8
|
[20] |
Li Q X, Wang T F, Wang D Z. Calibration of a mass spectrometer for the direct measurement of water concentration and its application to the study of sooting flames[J]. Measurement Science and Technology,2012,23(5):055001 doi: 10.1088/0957-0233/23/5/055001
|
[21] |
Kaufmann S, Voigt C, Jurkat T, et al. The airborne mass spectrometer AIMS-Part 1: AIMS-H2O for UTLS water vapor measurements[J]. Atmospheric Measurement Techniques,2016,9(3):939−953 doi: 10.5194/amt-9-939-2016
|
[22] |
Gardner B D, Erwin P M, Lee W T, et al. Improving the measurement accuracy of water partial pressure using the major constituent analyzer[J]. SAE International Journal of Aerospace,2009,4(1):285−290 doi: 10.4271/2009-01-2432
|
[23] |
Verchovsky A B, Anand M, Barber S J, et al. A quantitative evolved gas analysis for extra-terrestrial samples[J]. Planetary and Space Science,2020,181:104830 doi: 10.1016/j.pss.2019.104830
|
[24] |
Robert E. Mass spectrometer calibration over wide concentration ranges in multicomponent gas mixtures[J]. Measurement Science and Technology,2010,21(2):025102 doi: 10.1088/0957-0233/21/2/025102
|
[25] |
Mahaffy P R, Webster C R, Cabane M, et al. The sample analysis at Mars investigation and instrument suite[J]. Space Science Reviews,2012,170(1):401−478
|
[26] |
Leshin L A, Mahaffy P R, Webster C R, et al. Volatile, isotope, and organic analysis of Martian fines with the Mars curiosity rover[J]. Science,2013,341(6153):1238937 doi: 10.1126/science.1238937
|
[27] |
Sutter B, Ming D W, Boynton W V, et al. Summary of results from the mars phoenix lander's thermal evolved gas analyzer[R] Houston: Lunar and Planetary and Exploration, 2009: 1
|
[28] |
Boynton W V, Bailey S H, Hamara D K, et al. Thermal and evolved gas analyzer: part of the Mars volatile and climate surveyor integrated payload[J]. Journal of Geophysical Research: Planets,2001,106(E8):17683−17698 doi: 10.1029/1999JE001153
|
[29] |
Biswas J, Sheridan S, Pitcher C, et al. Searching for potential ice-rich mining sites on the moon with the lunar volatiles scout[J]. Planetary and Space Science,2020,181:104826 doi: 10.1016/j.pss.2019.104826
|
[30] |
Liu Z H, He H Y, Li J N, et al. Measurement and uncertainty analysis of lunar soil water content via heating flux method[J]. Aerospace,2023,10(7):657 doi: 10.3390/aerospace10070657
|
[31] |
Urbina D A, Gancet J, Kullack K, et al. LUVMI: an innovative payload for the sampling of volatiles at the lunar poles[C/OL]. International Astronautical Congress 2017, Adelaide, Australia, 2017: 1−12
|
[32] |
Belousov A, Miller M, Continetti R, et al. Sampling accelerated micron scale ice particles with a quadrupole ion trap mass spectrometer[J]. Journal of the American Society for Mass Spectrometry,2021,32(5):1162−1168 doi: 10.1021/jasms.0c00442
|