[1] |
中华人民共和国国家标准. GB/T 3163-2007真空技术术语[S]. 2007 (in Chinese)
National standard of the People’s Republic of China. GB/T 3163-2007 Vacuum Technology Terminology[S]. 2007
|
[2] |
巴德纯, 王晓冬, 刘坤, 等. 现代涡轮分子泵的进展[J]. 真空,2010,47(4):1−6 (in Chinese)
Ba D C, Wang X D, Li K, et al. Advances in modern turbomolecular pumps[J]. Vacuum,2010,47(4):1−6
|
[3] |
Henning J. Trends in the development and use of turbomolecular pumps[J]. Vacuum,1978,28(10-11):391−398 doi: 10.1016/S0042-207X(78)80004-9
|
[4] |
Becker, Bernhardt K H, 陈大洋译. 涡轮分子泵的技术与应用[J]. 真空, 1985, 22(2): 59−63 (in Chinese)
Becker, Bernhardt K H, Chen D. Technology and application of turbomolecular pump[J]. Vacuum, 1985, 22(2): 59−63
|
[5] |
刘坤, 巴德纯, 张振厚, 等. 现代真空获得设备的最新进展: 广东省真空学会2010年年会暨广东省真空与低碳技术交流会[C]. 中国广东深圳, 2010 (in Chinese)
Li K, Ba D C, Zhang Z H, et al. The latest progress in modern vacuum acquisition equipment: Guangdong Vacuum Society 2010 Annual Meeting and Guangdong Vacuum and Low Carbon Technology Exchange Conference[C]. Shenzhen, Guangdong, China, 2010
|
[6] |
姜燮昌. 粗真空、中真空获得设备的最新进展与应用[J]. 真空,2017,54(3):1−6 (in Chinese)
Jiang X C. The latest progress and application of equipment for obtaining coarse and medium vacuum[J]. Vacuum,2017,54(3):1−6
|
[7] |
Sun J, Zhou H, Ju Z. Dynamic stiffness analysis and measurement of radial active magnetic bearing in magnetically suspended molecular pump[J]. Nature Publishing Group UK,2020,10(1):1−16
|
[8] |
Moreira A B B, Thouverez F. Influence of blade flexibility on the dynamic response simulation of a turbomolecular pump on magnetic bearings: ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition[C]. USA, 2020
|
[9] |
Zhang X, Han B, Liu X, et al. Prediction and experiment of DC- bias iron loss in radial magnetic bearing for a small scale turbomolecular pump[J]. Vacuum,2019,163:224−235 doi: 10.1016/j.vacuum.2019.02.012
|
[10] |
郑世强, 陈诚, 刘刚, 等. 磁悬浮分子泵高速转子章动相位裕度跟踪补偿控制[J]. 机械工程学报,2018,54(17):100−107 (in Chinese) doi: 10.3901/JME.2018.17.100
Zheng S Q, Chen C, Li G, et al. High-speed rotor nutation phase margin tracking compensation control of magnetic suspension molecular pump[J]. Journal of Mechanical Engineering,2018,54(17):100−107 doi: 10.3901/JME.2018.17.100
|
[11] |
Chen Q, Li J. Field dynamic balancing for magnetically suspended turbomolecular pump[J]. Sensors (Basel),2023,23(13):1−13 doi: 10.1109/JSEN.2023.3287172
|
[12] |
Zhang Y, Wang K, He Z, et al. Rotor-dynamic analysis for magnetic turbomolecular pump rotor with different assembly relations: The 22nd International Conference on Electrical Machines and Systems [C]. 2019. IEEE
|
[13] |
Han B, He Z, Zhang X, et al. Loss estimation, thermal analysis, and measurement of a large-scale turbomolecular pump with active magnetic bearings[J]. IET electric power applications,2020,14(7):1283−1290 doi: 10.1049/iet-epa.2020.0037
|
[14] |
Han B, Xiong K, Mao K. Estimation of temperature in turbo-molecular pump based on motor resistance online identification[J]. Vacuum,2019,169:108935 doi: 10.1016/j.vacuum.2019.108935
|
[15] |
Daga A P, Garibaldi L, Bonmassar L. Turbomolecular high-vacuum pump bearings diagnostics using temperature and vibration measurements: 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT)[C]. 2021
|
[16] |
Thouverez A B B M. Dynamic modelling and vibration control of a turbomolecular pump with magnetic bearings in the presence of blade flexibility: The 36th IMAC, A Conference and Exposition on Structural Dynamics 2018[C]. 2018
|
[17] |
Huang Z, Han B, Le Y. Modeling method of the modal analysis for turbomolecular pump rotor blades[J]. Vacuum,2017,144:145−151 doi: 10.1016/j.vacuum.2017.07.029
|
[18] |
Zhang Y, Tang J, Wen T. A modified transfer matrix method for modal analysis of stepped rotor assembly applied in the turbomolecular pump[J]. Shock and Vibration,2022,2022:1−13
|
[19] |
Wei S, Zhou J, Bo L, et al. Phase compensation for whirl modal control of magnetic levitation turbomolecular pump: 2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)[C]. Beijing, 2022, IEEE, 2022−01−01
|
[20] |
Fomina I M. Influence of the shape of the cross-section of the blades on the pumping characteristics of a turbomolecular vacuum pump[J]. Vestnik Mashinostroeniya,2022(2):23−27
|
[21] |
匡永麟, 王晓冬, 张国玉, 等. 涡轮分子泵曲面叶片抽气特性研究[J]. 真空科学与技术学报,2022,42(10):731−736 (in Chinese)
Kuang Y L, Wang X D, Zhang G Y, et al. Pumping characteristics of curved blades of turbomolecular pump[J]. Journal of Vacuum Science and Technology,2022,42(10):731−736
|
[22] |
Chen Z, Wang W, Li Z, et al. Modeling and optimization of the blade structural parameters for a turbomolecular pump[J]. Machines,2023,11(5):517 doi: 10.3390/machines11050517
|
[23] |
Chen T, Lee J, Shie M, et al. Studies on the numerical control programming for Multi-Axis machining of turbomolecular pump rotor[J]. Electronics,2023,12(6):1281 doi: 10.3390/electronics12061281
|
[24] |
姚松勤, 常轩, 常鑫. 涡轮分子泵冷却技术发展研究[J]. 现代工业经济和信息化,2022,12(7):263−264,267 (in Chinese)
Yao S Q, Chang X, Chang X. Research on the development of cooling technology for turbomolecular pumps[J]. Modern Industrial Economy and Informationization,2022,12(7):263−264,267
|
[25] |
匡永麟, 王晓冬, 黄海龙, 等. 涡轮分子泵叶列抽气性能的计算方法改进[J]. 真空科学与技术学报,2022,42(1):26−30 (in Chinese)
Kuang Y L, Wang X D, Huang H L, et al. Improvement of the calculation method of the pumping performance of the turbomolecular pump blade row[J]. Journal of Vacuum Science and Technology,2022,42(1):26−30
|
[26] |
Gordeeva U S, Sharipov F M. Mathematical modeling the process of gas flow in the turbomolecular pump using the Cercignani-Lampis gas-surface interaction model[J]. Proceedings of the Institute for System Programming of the RAS,2022,34(6):197−206 doi: 10.15514/ISPRAS-2022-34(6)-16
|
[27] |
孙坤, 李坤, 汪森辉, 等. 基于组合叶列的涡轮分子泵结构优化与抽气机制研究[J]. 安徽工程大学学报,2023,38(2):14−20 (in Chinese) doi: 10.3969/j.issn.2095-0977.2023.02.003
Sun K, Li K, Wang S H, et al. Research on structure optimization and pumping mechanism of tmp based on combined blade row[J]. Journal of Anhui Engineering University,2023,38(2):14−20 doi: 10.3969/j.issn.2095-0977.2023.02.003
|
[28] |
Sun K, Zhang S W, Han F, et al. A new modeling method to reveal pumping mechanism of turbomolecular pump[J]. Journal of Applied Fluid Mechanics,2021,14(1):165−173
|
[29] |
Jousten K. Wutz handbuch vakuumtechnik_ theorie und praxis[M]. Vieweg Teubner Verlag, 2004
|
[30] |
Huang Z, Han B, Le Y. Multidisciplinary design strategies for turbomolecular pumps with ultrahigh vacuum performance[J]. IEEE Transactions on Industrial Electronics,2019,66(12):9549−9558 doi: 10.1109/TIE.2019.2891440
|
[31] |
王晓冬, 巴德纯, 张世伟, 等. 真空技术[M]. 北京: 冶金工业出版社, 2006 (in Chinese)
Wang X D, Ba D C, Zhang S W, et al. Vacuum technology[M]. Beijing: Metallurgical industry press, 2006
|
[32] |
巴德纯, 王晓冬. 分子真空泵的理论与实践[M]. 北京: 科学出版社, 2021 (in Chinese)
Ba D C, Wang X D. The theory and practice of molecular vacuum pump[M]. Beijing: Science press, 2021
|
[33] |
Kruger C H. The Axial-Flow compressor in the Free-Molecule range[D]. Cambridge, Massachusetts, USA: Massachusetts Institute of Technology, 1960
|
[34] |
Becker W. The turbomolecular pump, its design, operation and theory; calculation of the pumping speed for various gases and their dependence on the forepump[J]. Vacuum,1966,16(11):625−632 doi: 10.1016/0042-207X(66)91425-4
|
[35] |
王晓冬, 张磊, 巴德纯, 等. 涡轮分子泵抽气性能计算的误差分析[J]. 真空科学与技术学报,2016,36(4):432−435 (in Chinese)
Wang X D, Zhang L, Ba D C, et al. Error analysis of pumping performance calculation for turbomolecular pumps[J]. Journal of Vacuum Science and Technology,2016,36(4):432−435
|
[36] |
王晓冬, 巴德纯, 蒋婷婷, 等. 涡轮分子泵抽气性能计算及其误差评价: 中国真空学会2014学术年会[C]. 中国广东广州, 2014 (in Chinese)
Wang X D, Ba D C, Jiang T T, et al. Calculation and error evaluation of turbomolecular pump pumping performance: 2014 Academic Annual Meeting of the Chinese Vacuum Society[C]. Guangzhou, Guangdong, China, 2014
|
[37] |
Wang S, Ninokata H, Merzari E, et al. Numerical study of a single blade row in turbomolecular pump[J]. Vacuum,2009,83(8):1106−1117 doi: 10.1016/j.vacuum.2009.01.007
|
[38] |
Amoli A, Ebrahimi R, Hosseinalipour S M. Some features of molecular flow in a rotor–stator row with real topology[J]. Vacuum,2004,72(4):427−438 doi: 10.1016/j.vacuum.2003.10.002
|
[39] |
Tu J Y, Yang N H. On the calculation of the overall transmission probability of a variable blade length multiple-stage turbomolecular pump[J]. Vacuum,1988,38(1):13−14 doi: 10.1016/0042-207X(88)90250-3
|
[40] |
李得天, 习振华, 王永军, 等. 真空测试计量技术及其航天应用[J]. 真空科学与技术学报,2021,41(9):795−816 (in Chinese)
Li D T, Xi Z H, Wang Y J, et al. Vacuum measurement technology and its aerospace application[J]. Journal of Vacuum Science and Technology,2021,41(9):795−816
|
[41] |
李得天. 中国真空计量2004-2019年发展概况及趋势分析[J]. 真空与低温,2020,26(1):1−16 (in Chinese) doi: 10.3969/j.issn.1006-7086.2020.01.001
Li D T. Development and trend analysis of vacuum metrology in China from 2004 to 2019[J]. Vacuum and Cryogenics,2020,26(1):1−16 doi: 10.3969/j.issn.1006-7086.2020.01.001
|
[42] |
张虎忠, 李得天, 成永军, 等. 超高真空计研制及其计量特性研究[J]. 真空电子技术,2020(4):63−68 (in Chinese)
Zhang H Z, Li D T, Cheng Y J, et al. The development of ultra-high vacuum gauge and its measurement characteristics research[J]. Vacuum Electronic Technology,2020(4):63−68
|
[43] |
卢耀文, 董云宁, 闫睿, 等. 一种基于CF400接口分子泵抽速测试装置[J]. 真空科学与技术学报,2020,40(5):416−420 (in Chinese)
Lu Y W, Dong Y N, Yan R, et al. A molecular pump pumping speed test device based on CF400 interface[J]. Journal of Vacuum Science and Technology,2020,40(5):416−420
|
[44] |
赵博文, 延峰, 杨传森, 等. 基于虚拟仪器的分子泵抽速自动测试软件设计[J]. 真空科学与技术学报,2020,40(7):619−624 (in Chinese)
Zhao B W, Yan F, Yang C S, et al. Design of molecular pump pumping speed automatic test software based on virtual instrument[J]. Journal of Vacuum Science and Technology,2020,40(7):619−624
|
[45] |
黄文平. 分子泵转速对氦质谱检漏仪灵敏度的研究[J]. 中国仪器仪表,2016(9):29−31 (in Chinese) doi: 10.3969/j.issn.1005-2852.2016.09.007
Huang W P. Study on the sensitivity of molecular pump speed to helium mass spectrometer leak detector[J]. China Instrumentation,2016(9):29−31 doi: 10.3969/j.issn.1005-2852.2016.09.007
|
[46] |
Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Clarendon Press: Oxford, 1994
|
[47] |
Sharipov F. Numerical simulation of turbomolecular pump over a wide range of gas rarefaction[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2010, 28(6): 1312-1315
|
[48] |
周云龙, 洪文鹏, 孙斌著. 多相流体力学理论及其应用[M]. 2008 (in Chinese)
Zhou Y L, Hong W P, Sun B. Multiphase fluid mechanics theory and its application[M]. 2008
|
[49] |
Tu J Y, Yang N H, Pang S J, et al. A further exploration of an important factor affecting the pumping performance of turbomolecular pumps[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films,1988,6(4):2535−2540
|
[50] |
Tu J Y, Yang N H. Theoretical studies of the modern turbomolecular pump[J]. Vacuum,1987,37(11):831−837
|
[51] |
Heo J, Hwang Y. DSMC calculations of blade rows of a turbomolecular pump in the molecular and transition flow regions[J]. Vacuum,2000,56(2):133−142 doi: 10.1016/S0042-207X(99)00181-5
|
[52] |
Sawada T. Performance of a turbomolecular pump in the transition and slip flow regimes[J]. Bulletin of the JSME,1979,22(165):362−369 doi: 10.1299/jsme1958.22.362
|
[53] |
Schneider T N, Katsimichas S, de Oliveira C R E, et al. Analysis of three-dimensional single stage and two dimensional multistage models of flows in turbomolecular pumps[J]. Vacuum,1997,48(5):449−453 doi: 10.1016/S0042-207X(96)00310-7
|
[54] |
Li Y, Chen X, Guo W, et al. Accurate simulation of turbomolecular pumps with modified algorithm by 3D direct simulation Monte Carlo method[J]. Vacuum,2014,109(SI):354−359
|
[55] |
Versluis R, Dorsman R, Thielen L, et al. Numerical investigation of turbomolecular pumps using the direct simulation Monte Carlo method with moving surfaces[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2009, 27(3): 543-547
|
[56] |
Wang S, Ninokata H. A three-dimensional DSMC simulation of single-stage turbomolecular pump adopting accurate intermolecular collisions models[J]. Journal of Fluid Science & Technology,2006,1(2):58−71
|
[57] |
孙坤, 张世伟, 韩峰, 等. 涡轮分子泵多级组合叶列模拟算法的比较研究[J]. 真空与低温,2020,26(1):82−86 (in Chinese) doi: 10.3969/j.issn.1006-7086.2020.01.013
Sun K, Zhang S W, Han F, et al. A comparative study of simulation algorithms for multi-stage combined blade train of turbomolecular pump[J]. Vacuum and Cryogenic,2020,26(1):82−86 doi: 10.3969/j.issn.1006-7086.2020.01.013
|
[58] |
李津铭, 张世伟, 李雅洁, 等. 质谱仪高真空动态节流取样阶段气体质量歧视现象的蒙特卡罗模拟分析: 第十四届国际真空科学与工程应用学术会议[C]. 中国辽宁沈阳, 2019 (in Chinese)
Li J M, Zhang S W, Li Y J, et al. Monte Carlo simulation analysis of gas mass discrimination in high vacuum dynamic throttling sampling stage of mass spectrometer: The 14th International Conference on Vacuum Science and Engineering Applications[C]. Shenyang, Liaoning, China, 2019
|
[59] |
Liu H, Wang M, Wang J, et al. Monte Carlo simulations of gas flow and heat transfer in vacuum packaged MEMS devices[J]. Applied Thermal Engineering,2007,27(2-3):323−329 doi: 10.1016/j.applthermaleng.2006.08.002
|