[1] 陈涛, 许忠旭, 李玉忠. KM6低温泵新型测温系统研制[J]. 航天器环境工程,2008,25(6):591−593 (in Chinese) doi: 10.3969/j.issn.1673-1379.2008.06.022 Chen T, Xu Z X, Li Y Z. A new temperature measurement system for cryopumps in KM6[J]. Spacecraft Environment Engineering,2008,25(6):591−593 doi: 10.3969/j.issn.1673-1379.2008.06.022
[2] 张晓鸽. 基于振动信号分析的滚动轴承故障诊断仪的设计与实现[D]. 重庆: 重庆大学, 2013 (in Chinese) Zhang X G. Design and implementation of fault diagnosis instrument for rolling bearing based on vibration signal analysis[D]. Chongqing: Chongqing University, 2013
[3] 高远. 基于振动信号的汽车发动机缺缸及轴瓦磨损故障诊断研究[D]. 天津: 天津大学, 2018 (in Chinese) Gao Y. Research on fault diagnosis of automobile engine for the lack of cylinder and wear of bushing based on vibration signal[D]. Tianjin: Tianjin University, 2018
[4] Tran V T, Yang B S, Oh M S, et al. Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference[J]. Expert systems with applications,2009,36(2):1840−1849 doi: 10.1016/j.eswa.2007.12.010
[5] Randall R B, Jérôme Antoni. Rolling element bearing diagnostics - A Tutorial[J]. Mechanical Systems & Signal Processing,2011,25(2):485−520
[6] Liu W Y, Han J G, Lu X N. A new gear fault feature extraction method based on hybrid time-frequency analysis[J]. Neural Computing & Applications,2014,25(2):387−392
[7] Van M, Kang H J, Shin K S. Rolling element bearing fault diagnosis based on non-local means de-noising and empirical mode decomposition[J]. IET Science, Measurement & Technology,2014,8(6):571−578.
[8] Tabrizi A, Garibaldi L, Fasana A, et al. Early damage detection of roller bearings using wavelet packet decomposition, ensemble empirical mode decomposition and support vector machine[J]. Meccanica,2015,50(3):865−874 doi: 10.1007/s11012-014-9968-z
[9] 林鹏飞, 陶继忠. 基于多样性特征和多源信息的分子泵故障诊断[J]. 真空科学与技术学报,2020,40(1):33−39 (in Chinese) Lin P F, Tao J Z. Intelligent fault diagnosis method of turbo-molecular pump: An Instrumentation Study[J]. Chinese Journal of Vacuum Science and Technology,2020,40(1):33−39
[10] Shi P M, Liang K, Zhang Y, et al. A novel intelligent fault diagnosis method of rotating machinery based on deep learning and PSO-SVM[J]. Journal of Vibroengineering,2017,19(8):5932−5946 doi: 10.21595/jve.2017.18380
[11] 王保建, 张小丽, 傅杨奥骁, 等. 优化支持向量机及其在智能故障诊断中的应用[J]. 振动. 测试与诊断,2017,37(3):547−552 (in Chinese) Wang B J, Zhang X L, Fu Y A X, et al. Optimization of support vector machine and its application in intelligent fault diagnosis. Journal of Vibration[J]. Measurement and Diagnosis,2017,37(3):547−552
[12] 王斌, 崔宝珍. 基于CEEMD-MPE和ELM的齿轮箱故障诊断研究[J]. 组合机床与自动化加工技术,2019(4):103−106 (in Chinese) Wang B, Cui B Z. Fault diagnosis of gearbox based on CEEMD-MPE and ELM[J]. Modular Machine Tool & Automatic Manufacturing Technique,2019(4):103−106
[13] Lu C Q, Wang S P, Makis V. Fault severity recognition of aviation piston pump based on feature extraction of EEMD paving and optimized support vector regression model[J]. Aerospace Science & Technology,2017,67:105−117
[14] Wang Y, Xu G H, Liang L, et al. Detection of weak transient signals based on wavelet packet transform and manifold learning for rolling element bearing fault diagnosis[J]. Mechanical Systems & Signal Processing,2015,54:259−276
[15] 杨超, 王志伟. 遗传算法和BP神经网络在电机故障诊断中的应用研究[J]. 噪声与振动控制,2010,30(5):153−156 (in Chinese) doi: 10.3969/j.issn.1006-1355.2010.05.036 Yang C, Wang Z W. Application research on genetic algorithm and BP neural network in motor fault diagnosis[J]. Noise and Vibration Control,2010,30(5):153−156 doi: 10.3969/j.issn.1006-1355.2010.05.036
[16] 杨永锋, 吴亚锋, 任兴民, 等. 随机噪声对经验模态分解非线性信号的影响[J]. 物理学报,2010,59(6):3778−3784 (in Chinese) doi: 10.7498/aps.59.3778 Yang Y F, Wu Y F, Ren X M, et al. The effect of random noise for empirical mode decomposition of nonlinear signals[J]. Acta Phys Sin,2010,59(6):3778−3784 doi: 10.7498/aps.59.3778