| [1] | Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Materialia,2014,81:428−441 doi: 10.1016/j.actamat.2014.08.026 |
| [2] | Huang X J, Miao J S, Luo A A. Lightweight AlCrTiV high-entropy alloys with dual-phase microstructure via microalloying[J]. Journal of Materials Science,2018,54(3):2271−2277 |
| [3] | Wani I S, Bhattacharjee T, Sheikh S, et al. Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy Alloy[J]. Materials Research Letters,2016,4(3):174−179 doi: 10.1080/21663831.2016.1160451 |
| [4] | Jensen J K, Welk B A, Williams R E A, et al. Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1[J]. Scripta Materialia,2016,121:1−4 doi: 10.1016/j.scriptamat.2016.04.017 |
| [5] | Butler T M, Chaput K J, Dietrich J R, et al. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs)[J]. Journal of Alloys and Compounds,2017,729:1004−1019 doi: 10.1016/j.jallcom.2017.09.164 |
| [6] | Wu Y, Si J, Lin D, et al. Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys[J]. Materials Science and Engineering: A,2018,724:249−259 doi: 10.1016/j.msea.2018.03.071 |
| [7] | Lilensten L, Couzinié J P, Bourgon J, et al. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity[J]. Materials Research Letters,2016,5(2):110−116 |
| [8] | Senkov O N, Senkova S V, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis[J]. Acta Materialia,2013,61(5):1545−1557 doi: 10.1016/j.actamat.2012.11.032 |
| [9] | Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics,2011,19(5):698−706 doi: 10.1016/j.intermet.2011.01.004 |
| [10] | Zaddach A J, Scattergood R O, Koch C C. Tensile properties of low-stacking fault energy high-entropy alloys[J]. Materials Science and Engineering: A,2015,636:373−378 doi: 10.1016/j.msea.2015.03.109 |
| [11] | Liao Y C, Li T H, Tsai P H, et al. Designing novel lightweight, high-strength and high-plasticity Ti (AlCrNb)100-medium-entropy alloys[J]. Intermetallics,2020,117:106673 doi: 10.1016/j.intermet.2019.106673 |
| [12] | Jiang S, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature,2017,544(7651):460−464 doi: 10.1038/nature22032 |
| [13] | Wang S P, Ma E, Xu J. New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution[J]. Intermetallics,2019,107:15−23 doi: 10.1016/j.intermet.2019.01.004 |
| [14] | Li Y, Liaw P, Zhang Y. Microstructures and properties of the low-density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 high-entropy alloys[J]. Metals,2022,12(3):496 doi: 10.3390/met12030496 |
| [15] | Zhou J, Liao H, Chen H, et al. Realizing strength-ductility combination of Fe3.5Ni3.5Cr2MnAl0.7 high-entropy alloy via coherent dual-phase structure[J]. Vacuum,2023,215:112297 doi: 10.1016/j.vacuum.2023.112297 |
| [16] | 黄纯可, 李伟, 刘平, 等. 射频磁控溅射制备(AlCrTiZrNb)N高熵合金薄膜的微观组织和力学性能[J]. 真空科学与技术学报,2018,38(6):487−493(in chinese) Huang C K, L W, L P, et al. Synthesis and mechanical properties of (AlCrTiZrNb) N high entropy alloy films grown by RF magnetron sputtering[J]. Chinese Journal of Vacuum Science and Technology,2018,38(6):487−493 |
| [17] | Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy[J]. Materials Letters,2015,142:153−155 doi: 10.1016/j.matlet.2014.11.162 |
| [18] | Cao T, Shang J, Zhao J, et al. The influence of Al elements on the structure and the creep behavior of Al x CoCrFeNi high entropy alloys[J]. Materials Letters,2016,164:344−347 doi: 10.1016/j.matlet.2015.11.016 |
| [19] | Pan Q, Zhang L, Feng R, et al. Gradient cell–structured high-entropy alloy with exceptional strength and ductility[J]. Science,2021,374:984−989 doi: 10.1126/science.abj8114 |
| [20] | Shi P, Zhong Y, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys[J]. Materials Today,2020,41:62−71 doi: 10.1016/j.mattod.2020.09.029 |
| [21] | Hosseini M, Danesh Manesh H. Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding[J]. Materials & Design,2015,81:122−132 |
| [22] | Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of Ti NbMoTaW refractory high-entropy alloys[J]. Materials Science and Engineering: A,2018,712:380−385 doi: 10.1016/j.msea.2017.12.004 |
| [23] | Juan C C, Tsai M H, Tsai C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining[J]. Materials Letters,2016,184:200−203 doi: 10.1016/j.matlet.2016.08.060 |
| [24] | Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off[J]. Nature,2016,534(7606):227−230 doi: 10.1038/nature17981 |
| [25] | Nandal V, Prasad A, Singh D, et al. The recrystallization behavior of cryo- and cold-rolled AlCoCrFeNiTi high entropy alloy[J]. Vacuum,2024,224:113190 doi: 10.1016/j.vacuum.2024.113190 |
| [26] | Cao Y, Wang L, Wu Q, et al. Partially recrystallized structure and mechanical properties of CoCrFeNiMo0.2 high-entropy alloy[J]. Acta Metallurgica Sinica,2020,56(3):333−339 |
| [27] | Ma Y, Wang Q, Jiang B B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions[J]. Acta Materialia,2018,147:213−225 doi: 10.1016/j.actamat.2018.01.050 |
| [28] | Soni V, Gwalani B, Alam T, et al. Phase inversion in a two-phase, BCC+B2, refractory high entropy alloy[J]. Acta Materialia,2020,185:89−97 doi: 10.1016/j.actamat.2019.12.004 |
| [29] | Guo R, Zhang P, Pan J, et al. Achieving prominent high-temperature mechanical properties in a dual-phase high-entropy alloy: A synergy of deformation-induced twinning and martensite transformation[J]. Acta Materialia,2024,264:119591 doi: 10.1016/j.actamat.2023.119591 |
| [30] | Zhang Z, Zhang J, Wang W, et al. Unveiling the deformation mechanism of highly deformable magnesium alloy with heterogeneous grains[J]. Scripta Materialia,2022,221:114963 doi: 10.1016/j.scriptamat.2022.114963 |
| [31] | Sun F, Hao Y L, Nowak S, et al. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti-26Nb and Ti-20Nb-6Zr (at. %) alloys[J]. J Mech Behav Biomed Mater,2011,4(8):1864−72 doi: 10.1016/j.jmbbm.2011.06.003 |
| [32] | Guo N N, Wang L, Luo L S, et al. Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy[J]. Materials & Design,2015,81:87−94 |
| [33] | Gali A, George E P. Tensile properties of high- and medium-entropy alloys[J]. Intermetallics,2013,39:74−78 doi: 10.1016/j.intermet.2013.03.018 |
| [34] | Xie B, Zhang B, Ning Y, et al. Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains[J]. Journal of Alloys and Compounds,2019,786:636−647 doi: 10.1016/j.jallcom.2019.01.334 |