[1] |
陈树军, 谭粤, 杨树斌, 等. 低温绝热气瓶漏放气性能的研究[J]. 真空科学与技术学报,2012,32(05):447−451 (in Chinese)
Chen S J, Tan Y, Yang S B, et al. Study of leakage and out-gassing of cryogenic insulated cylinder[J]. Journal of Vacuum Science and Technology,2012,32(05):447−451
|
[2] |
王健, 战颖, 魏蔚, 等. Ag400直接替代PdO应用于高真空多层绝热储罐中的研究[J]. 真空科学与技术学报,2017,370(1):1−6 (in Chinese)
Wang J, Zhan Y, Wei W, et al. Novel composite getter material of Ag400 for high vacuum multilayer insulation tank[J]. Journal of Vacuum Science and Technology,2017,370(1):1−6
|
[3] |
Abdel-Samad S, Abdel-Bary M, Kilian K. Residual gas analysis in the TOF vacuum system[J]. Vacuum,2005,78(1):83−89 doi: 10.1016/j.vacuum.2005.01.001
|
[4] |
Chen S, Wang R, Li X, et al. Experimental investigation and theoretical analysis on measurement of hydrogen adsorption in vacuum system-science direct[J]. International Journal of Hydrogen Energy,2010,35(9):4347−4353 doi: 10.1016/j.ijhydene.2010.02.046
|
[5] |
Hong S S, Shin Y H, Kim J T, et al. Residual gas survey of stainless steel 304 extreme high vacuum chamber with hot cathode ionization gauge[J]. Measurement,2008,41(9):1026−1031 doi: 10.1016/j.measurement.2008.02.006
|
[6] |
陈树军, 汪荣顺. Ag2O的添加对PdO吸附量以及微观结构的影响[J]. 真空科学与技术学报,2010,30(5):541−544 (in Chinese)
Chen S J, Wang R S. Influence Ag2O addition on adsorption and microstructures of PdO getter materials[J]. Journal of Vacuum Science and Technology,2010,30(5):541−544
|
[7] |
Dinh L N, Cairns G A, Strickland R A, et al. Mechanism and kinetic modeling of hydrogenation in the organic getter/palladium catalyst/activated carbon systems[J]. Physical Chemistry A,2015,119(6):943−951 doi: 10.1021/jp511052a
|
[8] |
Dinh L N, Cairns G A, Krueger R, et al. Aging aspects of DEB getters[J]. Journal of nuclear materials,2013,442(1−3):298−305 doi: 10.1016/j.jnucmat.2013.09.018
|
[9] |
Dinh L N, Schildbach M A, Herberg J L, et al. Hydrogen uptake of DPB getter pellets[J]. Journal of Nuclear Materials,2008,382(1):51−63 doi: 10.1016/j.jnucmat.2008.09.013
|
[10] |
Liu H Y, Bandyopadhyay P, Kim N H, et al. Surface modified graphene oxide/poly (vinyl alcohol) composite for enhanced hydrogen gas barrier film[J]. Polymer Testing,2016,50:49−56 doi: 10.1016/j.polymertesting.2015.12.007
|
[11] |
常凤雯, 杨晓娇, 黄德顺, 等. 炔基化改性聚乙烯醇吸氢材料的制备及吸氢性能表征[J]. 高分子材料科学与工程,2017,33(4):132−136 (in Chinese)
Chang F W, Yang X J, Huang D S, et al. Preparation of alkyne-modified polyvinyl alcohol hydrogen absorbing materials and characterization of hydrogen absorption properties[J]. Polymer Materials Science and Engineering,2017,33(4):132−136
|
[12] |
Metin Ö, Özkar S, Sun S. Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane[J]. Nano Research,2010,3(9):676−684 doi: 10.1007/s12274-010-0031-7
|
[13] |
Lyu J H, Wang J G, Lu C S, et al. Size-dependent halogenated nitrobenzene hydrogenation selectivity of Pd nanoparticles[J]. The Journal of Physical Chemistry C,2014(5):2594−2601
|
[14] |
Shang N G, Papakonstantinou P, Wang P, et al. Platinum integrated graphene for methanol fuel cells[J]. The Journal of Physical Chemistry C,2010,114(37):15837−15841 doi: 10.1021/jp105470s
|
[15] |
Szabó T, Berkesi O, Forgó P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of materials,2006,18(11):2740−2749 doi: 10.1021/cm060258+
|
[16] |
Rahmanian N, Hamishehkar H, Dolatabadi N E J, et al. Nano graphene oxide: A novel carrier for oral delivery of flavonoids[J]. Colloids and surfaces B:Biointerfaces,2014,123:331−338 doi: 10.1016/j.colsurfb.2014.09.036
|
[17] |
王成, 黄红霞, 肖阳, 等. 石墨烯/Sr2Ni0.4Co1.6O6复合材料的制备及其性能[J]. 精细化工,2019,36(08):1550−1555 (in Chinese)
Wang C, Huang H X, Xiao Y, et al. Preparation and properties of graphene/Sr2Ni0.4Co1.6O6 composites[J]. Fine Chemicals,2019,36(08):1550−1555
|
[18] |
Tarcan R, Todor-Boer O, Petrovai I, et al. Reduced graphene oxide today[J]. Journal of Materials Chemistry C,2019,8(4):1198−1224
|
[19] |
Wu X, Zeng X C. Periodic graphene nano buds[J]. Nano Letters,2009,9(1):250−256 doi: 10.1021/nl802832m
|
[20] |
Hermans S, Diverchy C, Dubois V, et al. Pd nanoparticles prepared by grafting of Pd complexes on phenol-functionalized carbon supports for liquid phase catalytic applications[J]. Applied Catalysis A, General,2014,474:263−271 doi: 10.1016/j.apcata.2013.09.029
|
[21] |
常凤雯, 黄德顺, 杨晓娇, 等. 富炔高分子/纳米钯复合吸氢材料的制备及表征[J]. 化工新型材料,2017,45(03):43−45 (in Chinese)
Chang F W, Huang D S, Yang X J, et al. Preparation and characterization of Pd nanoparticles/riched composite hydrogen material[J]. New Chemical Materials,2017,45(03):43−45
|
[22] |
Jr W, Offeman R E. Preparation of Graphitic Oxide[J]. Journal of the American Chemical Society,1958,80(6):1339 doi: 10.1021/ja01539a017
|
[23] |
Tran D N H, Kabiri S, Losic D. A green approach for the reduction of graphene oxide nanosheets using nonaromatic amino acids[J]. Carbon,2014,76:193−202 doi: 10.1016/j.carbon.2014.04.067
|
[24] |
周雪珂, 周志颖, 周灿, 等. Pd/rGO催化硝基苯无溶剂加氢合成苯胺[J]. 精细化工,2022,39(01):127−134 (in Chinese)
Zhou X K, Zhou Z Y. Zhou C, et al. Solvent-free hydrogenation of nitrobenzene to aniline catalyzed by Pd/rGO[J]. Fine Chemicals,2022,39(01):127−134
|
[25] |
Ortizacosta D, Moore T, Safarik D, et al. 3D‐printed silicone materials with hydrogen getter capability[J]. Advanced Functional Materials,2018,28(17):1707−1714
|
[26] |
Liu Y N, Chen S P, Zhao B J, et al. Synthesis of novel graphene-based targeted hydrogen getter nanocomposites and their properties [J]. Vacuum, 2023, 213
|
[27] |
Parambhath VB, Nagar R, Sethupathi K, et al. Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene[J]. Journal of Physical Chemistry C,2011,115(31):15679−15685 doi: 10.1021/jp202797q
|