[1] |
Rushton J A, Aldous M, Himsworth M D. Contributed review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology[J]. Review of Scientific Instruments,2014,85(12):121501 doi: 10.1063/1.4904066
|
[2] |
Danisi A, Soto J L B, Gomez A, et al. Final design of the fiber-optic current sensor bundle in the ITER buildings[J]. Journal of Instrumentation,2022,17(01):C01053 doi: 10.1088/1748-0221/17/01/C01053
|
[3] |
Kirilov K M, Denkova D, Tsutsumanova G G, et al. Note: Simple vacuum feedthrough for optical fiber with SubMiniature version a connectors at both ends[J]. Review of Scientific Instruments,2014,85(7):076107 doi: 10.1063/1.4891315
|
[4] |
Yang F, Bai Y, Hong W, et al. A charge control method for space-mission inertial sensor using differential UV LED emission[J]. Review of Scientific Instruments,2020,91(12):124502 doi: 10.1063/5.0013232
|
[5] |
Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity,2016,33(3):035010 doi: 10.1088/0264-9381/33/3/035010
|
[6] |
Taioli S, Dapor M, Dimiccoli F, et al. The role of low-energy electrons in the charging process of LISA test masses[J]. Classical and Quantum Gravity,2023,40(7):075001 doi: 10.1088/1361-6382/acbadd
|
[7] |
Schulte M O, Shaul D N A, Hollington D, et al. Inertial sensor surface properties for LISA Pathfinder and their effect on test mass discharging[J]. Classical and Quantum Gravity,2009,26(9):094008 doi: 10.1088/0264-9381/26/9/094008
|
[8] |
Kenyon S P, Letson B, Clark M, et al. A charge management system for gravitational reference sensors–design and instrument testing[C]//2021 IEEE aerospace conference (50100). IEEE, 2021: 1-9
|
[9] |
Antonucci F, Cavalleri A, Dolesi R, et al. Interaction between stray electrostatic fields and a charged free-falling test mass[J]. Physical review letters,2012,108(18):181101 doi: 10.1103/PhysRevLett.108.181101
|
[10] |
Ziegler T, Bergner P, Hechenblaikner G, et al. Modeling and performance of contact-free discharge systems for space inertial sensors[J]. IEEE Transactions on Aerospace and Electronic Systems,2014,50(2):1493−1510 doi: 10.1109/TAES.2014.120661
|
[11] |
Weber W J, Bortoluzzi D, Bosetti P, et al. Application of LISA gravitational reference sensor hardware to future intersatellite geodesy missions[J]. Remote Sensing,2022,14(13):3092 doi: 10.3390/rs14133092
|
[12] |
Clément J F, Bacquet D, Szriftgiser P. Ultraviolet curing adhesive-based optical fiber feedthrough for ultrahigh vacuum systems[J]. Journal of Vacuum Science & Technology A,2010,28(4):627−628
|
[13] |
Buchholz B, Ebert V. Compact, compression-free, displaceable, and resealable vacuum feedthrough with built-in strain relief for sensitive components such as optical fibers[J]. Review of Scientific Instruments,2014,85(5):055109 doi: 10.1063/1.4872076
|
[14] |
Abraham E R I, Cornell E A. Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems[J]. Applied optics, 1998, 37(10): 1762-1763
|
[15] |
Harbour P J. Miniature demountable two-channel electric feedthrough for high-vacuum use[J]. Review of Scientific Instruments,1965,36(11):1657−1658 doi: 10.1063/1.1719425
|
[16] |
Thomes Jr W J, LaRocca F V, Switzer R C, et al. Vibration performance comparison study on current fiber optic connector technologies[C]//Optical Technologies for Arming, Safing, Fuzing, and Firing IV. SPIE, 2008, 7070: 75−89
|
[17] |
Reinsch T, Cunow C, Schrötter J, et al. Simple feed-through for coupling optical fibres into high pressure and temperature systems[J]. Measurement Science and Technology,2013,24(3):037001 doi: 10.1088/0957-0233/24/3/037001
|
[18] |
Peerzada A R, Jobson C M, Kassa E, et al. Versatile optical fiber feedthroughs for ultra-high vacuum applications[J]. Vacuum,2020,180:109542 doi: 10.1016/j.vacuum.2020.109542
|
[19] |
Luo Y, Wu X, Wang K, et al. Comparative study on the outgassing rate of materials using different methods[J]. Mapan,2016,31:61−68 doi: 10.1007/s12647-015-0160-2
|