| [1] | Gu L, Lieberman M A. Axial distribution of optical emission in a planar magnetron discharge[J]. Journal of Vacuum Science & Technology A,1988,6:2960−2964 |
| [2] | Wendt A E, Lieberman M A, Meuth H. Radial current distribution at a planar magnetron cathode[J]. Journal of Vacuum Science & Technology A,1988,6:1827−1831 |
| [3] | Kusumoto Y, Iwata K. Numerical study of the characteristics of erosion in magnetron sputtering[J]. Vacuum,2004,74(3):359−365 |
| [4] | Cramer N F. Analysis of a one-dimensional, steady-state magnetron discharge[J]. Journal of Physics D Applied Physics,1997,30(18):2573 doi: 10.1088/0022-3727/30/18/012 |
| [5] | Bradley J W,Lister G. Model of the cathode fall region in magnetron discharges[J]. Plasma Sources Science & Technology,1997,6(4):524 |
| [6] | Shon C H, Lee J K, Lee H J, et al. Velocity distributions in magnetron sputter[J]. IEEE Transactions on Plasma Science,1998,26(6):1635−1644 doi: 10.1109/27.747881 |
| [7] | Shon C, Park J, Kang B, et al. Kinetic and Steady-State Properties of Magnetron Sputter with three-dimensional magnetic field[J]. Japanese Journal of Applied Physics,1999,38(7):4440−4449 |
| [8] | Qiu Q, Li Q, Su J, et al. Magnetic field improvement in end region of rectangular planar DC magnetron based on particle simulation[J]. Plasma Science and Technology,2008,10(6):694−700 doi: 10.1088/1009-0630/10/6/08 |
| [9] | Qiu Q, Li Q, Su J, et al. Simulation to predict target erosion of planar DC magnetron[J]. Plasma Science and Technology,2008,10(5):581−587 doi: 10.1088/1009-0630/10/5/12 |
| [10] | Sheridan T E, Goeckner M J, Goree J. Model of energetic electron transport in magnetron discharges[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films,1990,8(1):30−37 |
| [11] | Nanbu K, Segawa S, Kondo S. Self-consistent particle simulation of three-dimensional dc magnetron discharge[J]. Vacuum,1996,47(6-8):1013−1016 doi: 10.1016/0042-207X(96)00114-5 |
| [12] | Rogov A V, Kapustin Y V, Martynenko Y V. Factors determining the efficiency of magnetron sputtering. Optimization criteria[J]. Technical Physics,2015,60(2):283−291 doi: 10.1134/S1063784215020206 |
| [13] | Geng S F, Qiu X M, Cheng C M, et al. Three-dimensional particle-in-cell simulation of discharge characteristics in cylindrical anode layer hall plasma accelerator[J]. Physics of Plasmas,2012,19(4):78 |
| [14] | Geng S F, Tang D L, Wang C X, et al. Concentrated ion beam emitted from an enlarged cylindrical-anode-layer Hall plasma accelerator and mechanism[J]. Journal of Applied Physics,2013,113(113):78 |
| [15] | Geng S F, Tang D L, Wang C X, et al. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator[J]. Journal of Applied Physics,2013,113(113):R1−97 |
| [16] | Tang D L, Geng S F, Qiu X M, et al. Three-dimensional numerical investigation of electron transport with rotating spoke in a cylindrical anode layer Hall plasma accelerator[J]. Physics of Plasmas,2012,19:073519 doi: 10.1063/1.4740066 |
| [17] | Anders A. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)[J]. Journal of Applied Physics,2017,121(17):171101 doi: 10.1063/1.4978350 |
| [18] | Britun N, Konstantinidis S, Belosludtsev A, et al. Quantification of the hysteresis and related phenomena in reactive HiPIMS discharges[J]. Journal of Applied Physics,2017,121(17):171905 doi: 10.1063/1.4977819 |
| [19] | Hecimovic A, Corbella C, Maszl C, et al. Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge[J]. Journal of Applied Physics,2017,121(17):133302−661 |
| [20] | Strijckmans K, Moens F, Depla D. Perspective: Is there a hysteresis during reactive High Power Impulse Magnetron Sputtering (R-HiPIMS)[J]. Journal of Applied Physics,2017,121(8):080901 doi: 10.1063/1.4976717 |
| [21] | Ganesan R, Akhavan B, Partridge J G, et al. Evolution of target condition in reactive HiPIMS as a function of duty cycle: An opportunity for refractive index grading[J]. Journal of Applied Physics,2017,121(17):171909 doi: 10.1063/1.4977824 |
| [22] | Nieter C, Cary J R. VORPAL: A versatile plasma simulation code[J]. Journal of Computational Physics,2004,196(2):448−473 doi: 10.1016/j.jcp.2003.11.004 |
| [23] | Revel A, Mochalskyy S, Montellano I M, et al. Massive parallel 3D PIC simulation of negative ion extraction[J]. Journal of Applied Physics,2017,122(10):103302 doi: 10.1063/1.5001397 |
| [24] | Benyoucef D, Yousfi M. Particle modelling of magnetically confined oxygen plasma in low pressure radio frequency discharge[J]. Physics of Plasmas,2015,22(1):4440−198 |
| [25] | Shon C H, Lee J K. Modeling of magnetron sputtering plasmas[J]. Applied Surface Science,2002,192(1):258−269 |
| [26] | Yamamura Y. A simple analysis of the angular dependence of light-ion sputtering[J]. Nuclear Instruments & Methods in Physics Research,1984,2(1-3):578−582 |
| [27] | Yamamura Y, Tawara H. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence[J]. Atomic data and nuclear data tables,1996,62:149−253 doi: 10.1006/adnd.1996.0005 |
| [28] | Bohlmark J, Lattemann M, Gudmundsson J T, Ehiasarian A, Gonzalvo Y, Brenning N and Helmersson U. The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge[J]. Thin Solid Films,2006,515(4):1522−1526 doi: 10.1016/j.tsf.2006.04.051 |