[1] |
Murray R L, Holbert K E. Nuclear energy: an introduction to the concepts, systems, and applications of nuclear processes (7th edition)[M]. Amsterdam: Elsevier, 2015.
|
[2] |
Hayes S L, Thomas J K, Peddicord K L. Material property correlations for uranium mononitride: I. Physical properties[J]. Journal of Nuclear Materials,1990,171(2-3):262−270 doi: 10.1016/0022-3115(90)90374-V
|
[3] |
Besmann T M, Ferber M K, Lin H T, et al. Fission product release and survivability of UN-kernel LWR TRISO fuel[J]. Journal of Nuclear Materials,2014,448(1-3):412−419 doi: 10.1016/j.jnucmat.2013.10.034
|
[4] |
Suzuki Y, Arai Y. Thermophysical and thermodynamic properties of actinide mononitrides and their solid solutions[J]. Journal of Alloys and Compounds,1998,271-273:577−582 doi: 10.1016/S0925-8388(98)00160-1
|
[5] |
Olson W M, Mulford R N R. The decomposition pressure and melting point of uranium mononitride[J]. The Journal of Physical Chemistry,1963,67(4):952−954 doi: 10.1021/j100798a525
|
[6] |
Youinou G J, Sen R S. Impact of accident-tolerant fuels and claddings on the overall fuel cycle: a preliminary systems analysis[J]. Nuclear Technology,2014,188(2):123−138 doi: 10.13182/NT14-22
|
[7] |
Karoutas Z, Brown J, Atwood A, et al. The maturing of nuclear fuel: past to accident tolerant fuel[J]. Progress in Nuclear Energy,2018,102:68−78 doi: 10.1016/j.pnucene.2017.07.016
|
[8] |
Osaka M, Miwa S, Tachi Y. Simple fabrication process for CeO2-MgO composite as surrogate for actinide-containing target for use in nuclear fuel[J]. Ceramics International,2006,32(6):659−663 doi: 10.1016/j.ceramint.2005.04.026
|
[9] |
Tennery V J, Botts J L. The chemical characterization of uranium nitrides[J]. Nuclear Technology,1972,13(3):264−272 doi: 10.13182/NT72-A31081
|
[10] |
Zhang Y J, Lan J H, Wang C Z, et al. Theoretical investigation on incorporation and diffusion properties of Xe in uranium mononitride[J]. The Journal of Physical Chemistry C,2015,119(11):5783−5789 doi: 10.1021/jp510219a
|
[11] |
Lawrence Bright E, Rennie S, Siberry A, et al. Comparing the corrosion of uranium nitride and uranium dioxide surfaces with H2O2[J]. Journal of Nuclear Materials,2019,518:202−207 doi: 10.1016/j.jnucmat.2019.03.006
|
[12] |
Castano C E, O’Keefe M J, Fahrenholtz W G. Cerium-based oxide coatings[J]. Current Opinion in Solid State and Materials Science,2015,19(2):69−76 doi: 10.1016/j.cossms.2014.11.005
|
[13] |
Fahrenholtz W G, O’Keefe M J, Zhou H F, et al. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys[J]. Surface and Coatings Technology,2002,155(2-3):208−213 doi: 10.1016/S0257-8972(02)00062-2
|
[14] |
Dabalà M, Armelao L, Buchberger A, et al. Cerium-based conversion layers on aluminum alloys[J]. Applied Surface Science,2001,172(3-4):312−322 doi: 10.1016/S0169-4332(00)00873-4
|
[15] |
Roleček J, Foral Š, Katovský K, et al. A feasibility study of using CeO2 as a surrogate material during the investigation of UO2 thermal conductivity enhancement[J]. Advances in Applied Ceramics: Structural, Functional and Bioceramics,2017,116(3):123−131 doi: 10.1080/17436753.2016.1264122
|
[16] |
Stennett M C, Corkhill C L, Marshall L A, et al. Preparation, characterisation and dissolution of a CeO2 analogue for UO2 nuclear fuel[J]. Journal of Nuclear Materials,2013,432(1-3):182−188 doi: 10.1016/j.jnucmat.2012.07.038
|
[17] |
Fronzi M, Soon A, Delley B, et al. Stability and morphology of cerium oxide surfaces in an oxidizing environment: a first-principles investigation[J]. The Journal of Chemical Physics,2009,131(10):104701 doi: 10.1063/1.3191784
|
[18] |
Joyce L, Xie Y. A rapid sintering method for cerium nitride pellet: a uranium mononitride surrogate[J]. Ceramics,2022,5(4):1009−1018 doi: 10.3390/ceramics5040072
|
[19] |
O'Dell K D, Hensley E B. The decomposition pressure, congruent melting point and electrical resistivity of cerium nitride[J]. Journal of Physics and Chemistry of Solids,1972,33(2):443−449 doi: 10.1016/0022-3697(72)90025-X
|
[20] |
Schram R P C, Boshoven J G, Cordfunke E H P, et al. Enthalpy increment measurements of cerium mononitride, CeN[J]. Journal of alloys and compounds,1997,252(1-2):20−23 doi: 10.1016/S0925-8388(96)02707-7
|
[21] |
Bayoǧlu A S, Lorenzelli R. Oxygen diffusion in fcc fluorite type nonstoichiometric nuclear oxides MO2± x[J]. Solid State Ionics,1984,12:53−66 doi: 10.1016/0167-2738(84)90130-9
|
[22] |
Wan Y, Yi T M, Fu Y J, et al. Structure and oxidation properties of CeN thin films prepared by DC reactive magnetron sputtering[J]. Surface and Coatings Technology,2020,381:125168 doi: 10.1016/j.surfcoat.2019.125168
|
[23] |
Chen D F, Mei D, Li Y Q, et al. Protective nature of cerium-based oxides coating against Mg corrosion in Hanks’ balanced salt solution[J]. Corrosion Science,2023,219:111255 doi: 10.1016/j.corsci.2023.111255
|
[24] |
Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering: A,1996,213(1-2):103−114 doi: 10.1016/0921-5093(96)10233-1
|
[25] |
Brunette D M, Tengvall P, Textor M, et al. Titanium in medicine: material science, surface science, engineering, biological responses and medical applications[M]. Berlin: Springer, 2001
|
[26] |
Shoesmith D W, Ikeda B M, LeNeveu D M. Modeling the failure of nuclear waste containers[J]. Corrosion,1997,53(10):820−829 doi: 10.5006/1.3290267
|
[27] |
Idriss H. Surface reactions of uranium oxide powder, thin films and single crystals[J]. Surface Science Reports,2010,65(3):67−109 doi: 10.1016/j.surfrep.2010.01.001
|
[28] |
Chen H, Wang X M, Zhang R Q. Application and development progress of Cr-based surface coatings in nuclear fuel element: I. Selection, preparation, and characteristics of coating materials[J]. Coatings,2020,10(9):808 doi: 10.3390/coatings10090808
|
[29] |
Lin C, Song Y, Cao L X, et al. Oxygen reduction catalyzed by Au-TiO2 nanocomposites in alkaline media[J]. ACS Applied Materials & Interfaces,2013,5(24):13305−13311
|
[30] |
Lv X W, Tao L M, Cao M L, et al. Enhancing photoelectrochemical water oxidation efficiency via self-catalyzed oxygen evolution: a case study on TiO2[J]. Nano Energy,2017,44:411−418
|
[31] |
Wang T, Chen Z, Wang G Q, et al. Microstructure evolution of polycrystalline Ti2AlN MAX phase film during post-deposition annealing[J]. Journal of the European Ceramic Society,2018,38(15):4892−4898 doi: 10.1016/j.jeurceramsoc.2018.07.028
|