[1] |
Klaus J W, George S M. Growth of SiO2 at room temperature with the use of catalyzed sequential half-reactions[J]. Science,1997,278(5345):1934−1936 doi: 10.1126/science.278.5345.1934
|
[2] |
Klaus J W, George S M. Atomic layer deposition of SiO2 at room temperature using NH3-catalyzed sequential surface reactions[J]. Surface Science,2000,447(1−3):81−90 doi: 10.1016/S0039-6028(99)01119-X
|
[3] |
Du Y, George S M. SiO2 film growth at low temperatures by catalyzed atomic layer deposition in a viscous flow reactor[J]. Thin Solid Films,2005,491(1−2):43−53 doi: 10.1016/j.tsf.2005.05.051
|
[4] |
Kim D H, Lee H J, Jeong H, et al. Thermal atomic layer deposition of device-quality SiO2 thin films under 100°C using an aminodisilane precursor[J]. Chemistry of Materials,2019,31(15):5502−5508 doi: 10.1021/acs.chemmater.9b01107
|
[5] |
Maeng W J, Kim H. Thermal and plasma-enhanced ALD of Ta and Tioxide thin films from alkylamide precursors[J]. Electrochemical and Solid-State Letters,2006,9(6):191−194 doi: 10.1149/1.2186427
|
[6] |
Yang J H, Baek S B, Kim Y C. Initial surface reaction of di-isopropylaminosilane on a fully hydroxyl-terminated Si (001) surface[J]. Journal of Nanoscience and Nanotechnology,2014,14(10):7954−7960 doi: 10.1166/jnn.2014.9474
|
[7] |
Suzuki I, Dussarrat C, Yanagita K. Extra low-temperature SiO2 deposition using aminosilanes[J]. Ecs Transactions,2007,3(15):119−118 doi: 10.1149/1.2721480
|
[8] |
Baek S B, Kim D H, Kim Y C. Adsorption and surface reaction of bis-diethylaminosilane as a Si precursor on an OH-terminated Si (001) surface[J]. Applied surface science,2012,258(17):6341−6344 doi: 10.1016/j.apsusc.2012.03.033
|
[9] |
Burton B B, Kang S W, Rhee S W, et al. SiO2 atomic layer deposition using tris (dimethylamino) silane and hydrogen peroxide studied by in situ transmission FTIR spectroscopy[J]. The Journal of Physical Chemistry C,2009,113(19):8249−8257 doi: 10.1021/jp806638e
|
[10] |
Jeong Y C, Baek S B, Kim D H, et al. Initial reaction of silicon precursors with a varying number of dimethylamino ligands on a hydroxyl-terminated silicon (001) surface[J]. Applied surface science,2013,280:207−211 doi: 10.1016/j.apsusc.2013.04.129
|
[11] |
Ferguson J D, Smith E R, Weimer A W, et al. ALD of SiO2 at room temperature using TEOS and H2O with NH3 as the catalyst[J]. Journal of The Electrochemical Society,2004,151(8):528−535 doi: 10.1149/1.1768548
|
[12] |
Lee W J, Han C H, Park J K, et al. Atomic layer deposition and properties of silicon oxide thin films using alternating exposures to SiH2Cl2 and O3[J]. Japanese Journal of Applied Physics,2010,49(7):01−04
|
[13] |
Lee J H, Kim U J, Han C H, et al. Investigation of silicon oxide thin films prepared by atomic layer deposition using SiH2Cl2 and O3 as the precursors[J]. Japanese journal of applied physics,2004,43(3A):328−330 doi: 10.1143/JJAP.43.L328
|
[14] |
Kang J K, Musgrave C B. Mechanism of atomic layer deposition of SiO2 on the silicon (100)-2×1 surface using SiCl4 and H2O as precursors[J]. Journal of applied physics,2002,91(5):3408−3414 doi: 10.1063/1.1436294
|
[15] |
George S M. Atomic layer deposition: an overview[J]. Chemical Review,2010,110(1):111−131 doi: 10.1021/cr900056b
|
[16] |
Ding Y Y, Zhang Y C, Ren Y M, et al. Machine learning based modeling and operation for ALD SiO2 thin films using data from a multiscale CFD simulation[J]. Chemical Engineering Research and Design,2019,151:131−145 doi: 10.1016/j.cherd.2019.09.005
|
[17] |
Huang L, Han B. Density functional theory study on the full ALD process of silicon nitride thin film deposition via BDEAS or BTBAS and NH3[J]. Physical Chemistry Chemical Physics,2014,16(34):18501−18512 doi: 10.1039/C4CP02741H
|
[18] |
Nam T, Lee H, Choi T, et al. Low-temperature, high-growth-rate ALD of SiO2 using aminodisilane precursor[J]. Applied Surface Science,2019,485:381−390 doi: 10.1016/j.apsusc.2019.03.227
|
[19] |
Musgrave C B, Gordon R G. Precursors for atomic layer deposition of high-k dielectrics[J]. Future Fab International,2005,18:126−128
|
[20] |
De V, Glen A. Kinetics and mechanisms of nitrate and ammonium formation during ozonation of dissolved organic nitrogen[J]. Water Research,2017,108(16):451−461
|
[21] |
Lim s, Mcardell C S, Gunten U V. Relations of aliphatic amines with ozone: Kinetics and mechanisms[J]. Water Research,2019,157(15):514−528
|