[1] |
Liao Y C, Li T H, Tsai P H, et al, Designing novel lightweight, high-strength and high-plasticity Ti (AlCrNb)100-medium-entropy alloys[J]. Intermetallics, 2020, 117: 106673
|
[2] |
Huang X J, Miao J S, Luo A A, Lightweight AlCrTiV high-entropy alloys with dual-phase microstructure via microalloying[J]. Journal of Materials Science, 2018, 54 (3): 2271−2277
|
[3] |
Wani I S, Bhattacharjee T, Sheikh S, et al, Ultrafine-grained AlCoCrFeNi2. 1 eutectic high-entropy alloy[J]. Materials Research Letters,2016,4(3):174−179 doi: 10.1080/21663831.2016.1160451
|
[4] |
Stepanov N D, Shaysultanov D G, Salishchev G A, et al, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy[J]. Materials Letters, 2015, 142: 153−155
|
[5] |
Schuh B, Völker B, Todt J, et al, Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties[J]. Acta Materialia, 2018, 142: 201−212
|
[6] |
Miracle D B, Senkov O N, A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448−511
|
[7] |
Sohn S, Liu Y, Liu J, et al, Noble metal high entropy alloys[J]. Scripta Materialia, 2017, 126: 29−32
|
[8] |
Fu Z, Chen W, Wen H, et al, Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7. 5Cu17.5 high-entropy alloy[J]. Acta Materialia,2016,107:59−71 doi: 10.1016/j.actamat.2016.01.050
|
[9] |
Ma Y, Wang Q, Jiang B B, et al, Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions[J]. Acta Materialia, 2018, 147: 213−225
|
[10] |
Basu I, Ocelík V, De Hosson J T, BCC-FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys[J]. Acta Materialia, 2018, 157: 83−95
|
[11] |
Miracle D B, High entropy alloys as a bold step forward in alloy development[J]. Nat Commun, 2019, 10(1): 1805
|
[12] |
Hou J, Zhang M, Ma S, et al, Strengthening in Al0. 25CoCrFeNi high-entropy alloys by cold rolling[J]. Materials Science and Engineering: A,2017,707:593−601 doi: 10.1016/j.msea.2017.09.089
|
[13] |
Senkov O N, Gorsse S, Miracle D B, High temperature strength of refractory complex concentrated alloys[J]. Acta Materialia, 2019, 175: 394−405
|
[14] |
Butler T M, Chaput K J, Dietrich J R, et al, High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs)[J]. Journal of Alloys and Compounds, 2017, 729: 1004−1019
|
[15] |
Juan C C, Tseng K K, Hsu W L, et al, Solution strengthening of ductile refractory HfMo x NbTaTiZr high-entropy alloys[J]. Materials Letters, 2016, 175: 284−287
|
[16] |
Juan C C, Tsai M H, Tsai C W, et al, Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining[J]. Materials Letters, 2016, 184: 200−203
|
[17] |
Wu Q, Wang Z, He F, et al, Endless recrystallization of high-entropy alloys at high temperature[J]. Journal of Materials Science & Technology, 2022, 128: 71−81
|
[18] |
Li Z, Pradeep K G, Deng Y, et al, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off[J]. Nature, 2016, 534 (7606): 227−230
|
[19] |
Zhao J, Deng Y, Tang J, Grain refining with DDRX by isothermal MDF of Al-Zn-Mg-Cu alloy[J]. Journal of Materials Research and Technology, 2020, 9 (4): 8001−8012
|
[20] |
Xie B, Zhang B, Ning Y, et al, Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains[J]. Journal of Alloys and Compounds, 2019, 786: 636−647
|
[21] |
Jensen J K, Welk B A, Williams R E A, et al, Characterization of the microstructure of the compositionally complex alloy Al1Mo0. 5Nb1Ta0.5Ti1Zr1[J]. Scripta Materialia,2016,121:1−4 doi: 10.1016/j.scriptamat.2016.04.017
|
[22] |
Yu J, Zhao Y, Zhang W, et al, A novel heterogeneous network structure titanium matrix composite with a combination of strength and ductility[J]. Materials Science and Engineering: A, 2022, 840: 142954
|
[23] |
Yu F, Zhang Y, Kong C, et al, Microstructure and mechanical properties of Ti–6Al–4V alloy sheets via room-temperature rolling and cryorolling[J]. Materials Science and Engineering: A, 2022, 834: 142600
|