[1] 张国斌,胡胜生,封东来. 合肥光源[J]. 现代物理知识,2020,32(03):3−9
[2] Jiao Y,Pan W M. High energy photon source[J]. High Power Laser and Particle Beams,2022,34(01):38−43) (焦毅,潘卫民. 高能同步辐射光源[J]. 强激光与粒子束,2022,34(01):38−43)(in chinese) doi: 10.13405/j.cnki.xdwz.2022.01.013 Jiao Y, Pan W M. High energy photon source[J]. High Power Laser and Particle Beams, 2022, 34 (01): 38-43 doi: 10.13405/j.cnki.xdwz.2022.01.013
[3] Tang L L,Lu P,Sun B G,et al. Bunch-by-bunch phase measurement and longitudinal instabilities diagnostics at Hefei Light Source[J]. High Power Laser and Particle Beams,2021,33(10):104001 (唐雷雷,卢 平,孙葆根,等. 合肥光源逐束团相位测量及纵向不稳定性诊断[J]. 强激光与粒子束,2021,33(10):104001(in chinese) doi: 10.11884/HPLPB202133.210164 Tang L L, Lu P, Sun B G, et al. Bunch-by-bunch phase measurement and longitudinal instabilities diagnostics at Hefei Light Source [J]. High Power Laser and Particle Beams, 2021, 33 (10): 104001 doi: 10.11884/HPLPB202133.210164
[4] Wang Y G,Pei X T,Zhu B L,et al. Suppression of secondary electron emission from stainless-steel surface by laser etching: an experimental study[J]. Chinese Journal of Vacuum Science and Technology,2020,40(06):510−513.) (王一刚,裴香涛,朱邦乐,等. 激光刻蚀不锈钢材料的二次电子发射特性研究[J]. 真空科学与技术学报,2020,40(06):510−513.)(in chinese) doi: 10.13922/j.cnki.cjovst.2020.06.02 Wang Y G, Pei X T, Zhu B L, et al. Suppression of secondary electron emission from stainless-steel surface by laser etching: an experimental study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40 (06): 510-513 doi: 10.13922/j.cnki.cjovst.2020.06.02
[5] 袁学松,鄢 扬,钟任斌,等. 等离子体填充圆柱波导中双流不稳定性的研究[J]. 强激光与粒子束,2006,6(06):995−998
[6] Malyshev O B,Valizadeh R,Colligon J S,et al. Influence of deposition pressure and pulsed DC sputtering on pumping properties of Ti–Zr–V nonevaporable getter films[J]. Journal of Vacuum Science & Technology A,2009,27(3):521−530
[7] Stutzman M L,Adderley P A,Mamun M,et al. Nonevaporable getter coating chambers for extreme high vacuum[J]. Journal of Vacuum Science & Technology A,2018,36(3):301603
[8] 张 波,王 勇,尉 伟,等. 直流磁控溅射法在管道内壁镀TiZrV薄膜[J]. 强激光与粒子束,2010,22(09):2124−2128
[9] Zhang B,Wang Y,Wei W,et al. Deposition and characterization of TiZrV getter films[J]. Chinese Journal of Vacuum Science and Technology,2012,32(08):674−677 (张 波,王 勇,尉 伟,等. TiZrV 吸气剂薄膜的性能研究[J]. 真空科学与技术学报,2012,32(08):674−677(in chinese) Zhang B, Wang Y, Wei W, et al. Deposition and characterization of TiZrV getter films[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32 (08): 674-677
[10] Malyshev O B,Middleman K J,Colligon J S,et al. Activation and measurement of nonevaporable getter films[J]. Journal of Vacuum Science & Technology A,2009,27(2):321−327
[11] Collins I R,Ruzinov V L,Malyshev O B,et al. A photodesorption study of a TiZrV coated stainless steel vacuum chamber[J]. Proceedings of EPAC 2002,2002:2550−2553
[12] Malyshev O B,Smith A P,Valizadeh A,et al. Electron stimulated desorption from bare and nonevaporable getter coated stainless steels[J]. Journal of Vacuum Science & Technology A,2010,28(5):1215−1225
[13] Malyshev O B,Valizadeh R,Hogan B T,et al. Electron-stimulated desorption from plished and vacuum fired 316LN stainless steel coated with Ti-Zr-Hf-V[J]. Journal of Vacuum Science & Technology A,2014,32(6):061601
[14] Valizadeh R,Malyshev O B,Colligon J S,et al. Comparison of Ti-Zr-V nonevaporable getter films deposited using alloy or twisted wire sputter-targets[J]. Journal of Vacuum Science & Technology A,2010,28(6):1404−1412
[15] Michael H. Non-evaporable getter coatings at the european synchrotron radiation facility[J]. Journal of the Vacuum Society of Japan,2010,23(8):21−24
[16] Chiggiato P,Pinto P C. Ti-Zr-V Non-evaporable getter films: from development to large scale production for the large hadron collider[J]. Thin Solid Films,2006,515(2):382−388 doi: 10.1016/j.tsf.2005.12.218
[17] Wang Z W,Wang X D,Wei W,et al. Preparation and properties of low temperature activated titanium zirconium vanadium non-evaporable getter films[J]. Chinese Journal of Vacuum Science and Technology,2021,41(8):739−744 (汪志伟,王旭迪,尉 伟,等. 可低温激活的钛锆钒非蒸散型吸气剂薄膜的制备及其性能研究[J]. 真空科学与技术学报,2021,41(8):739−744(in chinese) Wang Z W, Wang X D, Wei W, et al. Preparation and properties of low temperature activated titanium zirconium vanadium non-evaporable getter films[J]. Chinese Journal of Vacuum Science and Technology, 2021, 42 (8): 739-744
[18] Lucia L A,Paolo C,Leonel M A,et al. Development of copper electroformed vacuum chambers with integrated nonevaporable getter thin film coatings[J]. Journal of Vacuum Science & Technology A,2018,36(2):021601
[19] Wang S H,Wang Z W,Shu X,et al. Activation characterization of the Ti-Zr-V getter films deposited by magnetron sputtering[J]. Applied Surface Science,2020,528:1−7
[20] Zhu B L,Ge X Q,Wang S H,et al. Activation and pumping characteristics of Ti–Zr–V films deposited on narrow tubes[J]. Nuclear Science and Techniques,2021,32(50):1−8
[21] Thornton J A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings[J]. Journal of Vacuum Science & Technology A,1974,11(4):666−670
[22] Abboud Z,Moutanabbir O. Temperature-dependent in situ studies of volatile molecule trapping in low temperature activated Zr alloy-based getters[J]. Journal of Physical Chemistry C,2017,121(6):3381−3396 doi: 10.1021/acs.jpcc.6b11426