[1] Eremeev G,Clemens W,Macha K,et al. Nb3Sn multicell cavity coating system at Jefferson Lab[J]. Rev Sci Instrum,2020,91(7):073911 doi: 10.1063/1.5144490
[2] Beebe M R,Valente-Feliciano A,Beringer D B,et al. Temperature and microstructural effects on the superconducting properties of niobium thin films[J]. IEEE Transactions on Applied Superconductivity,2017,27(4):1−4 doi: 10.1109/TASC.2017.2684059
[3] Burton M, Beebe M, Lukaszew R A, et al. RF results of Nb coated SRF accelerator cavities via HiPIMS[C]. proceedings of the LINAC, F, 2018
[4] Deambrosis S M,Keppel G,Ramazzo V,et al. A15 superconductors: an alternative to niobium for RF cavities[J]. Physica C:Superconductivity,2006,441(1-2):108−13 doi: 10.1016/j.physc.2006.03.047
[5] Chromik Š,Benacka Š,Gaži S,et al. Superconducting properties of MgB2 thin films prepared by sequential deposition of boron and magnesium[J]. Vacuum,2002,69(1-3):351−4 doi: 10.1016/S0042-207X(02)00357-3
[6] 倪志茂. 金属衬底 MgB2薄膜制备与射频性能研究[D]. 北京: 北京大学, 2017 Ni Zhimao. Metal substrate MgB2 thin film preparation and RF performance study[D]. Beijing: Peking University, 2017
[7] Marino M. Study of nbtin coatings by reactive magnetron sputtering for the production of 1.5 GHz superconducting accelerating cavities [R]. 1997
[8] Fabbricatore P,Fernandes P,Gualco G,et al. Study of niobium nitrides for superconducting RF cavities[J]. Journal of applied physics,1989,66(12):5944 doi: 10.1063/1.343621
[9] Ma Yongsheng,Zhang Pei,Dong Haiyi. Latest progress in Nb-coating synthesized on wall of superconducting RF Cu-cavity: a review study[J]. Journal of Vacuum Science and Technology,2020,40(03):255−61 (马永胜,张沛,董海义. 超导高频铜腔镀铌研究进展[J]. 真空科学与技术学报,2020,40(03):255−61(in chinese) doi: 10.13922/j.cnki.cjovst.2020.03.13 Ma Yongsheng, Zhang Pei, Dong Haiyi. Latest Progress in Nb-Coating Synthesized on Wall of Superconducting RF Cu-Cavity: A Review Study[J]. Journal of Vacuum Science and Technology, 2020, 40(03): 255−61 (in chinese) doi: 10.13922/j.cnki.cjovst.2020.03.13
[10] Abada A,Abbrescia M,AbdusSalam S S,et al. Fcc-ee: The lepton collider[J]. The European Physical Journal Special Topics,2019,228(2):261−623 doi: 10.1140/epjst/e2019-900045-4
[11] Group T C S. Cepc conceptual design report [J]. 2018, Volume I - Accelerator
[12] Rosaz G, Aull S, Ilyina E, et al. Srf cavity coatings: Review of alternative materials and coating techniques [J]. 2017
[13] Hao Jiankui,Zhao Kui,Zhang Baocheng,et al. Study of copper-niobium sputtered superconducting quadratic A study of one-fourth wavelength resonant cavities by copper-niobium sputtering[J]. Nuclear Technology,2000,1:36−8 (郝建奎,赵夔,张保澄,等. 铜铌溅射超导四分之一波长谐振腔的研究[J]. 核技术,2000,1:36−8(in chinese) doi: 10.3321/j.issn:0253-3219.2000.01.008 Hao Jiankui, Zhao Kui, Zhang Baocheng, et al. Study of copper-niobium sputtered superconducting quadratic A study of one-fourth wavelength resonant cavities by copper-niobium sputtering[J]. Nuclear Technology, 2000, 1: 36−8 (in chinese) doi: 10.3321/j.issn:0253-3219.2000.01.008
[14] Hao Jiankui,Zhao Kui,Zhang Baocheng,et al. Development and preliminary experiments of copper-niobium sputtered low Β superconducting cavities[J]. High Energy Physics and Nuclear Physics,2001,25(6):582−7 (郝建奎,赵夔,张保澄,等. 铜铌溅射型低 Β 超导腔的研制及初步实验[J]. 高能物理与核物理,2001,25(6):582−7(in chinese) Hao Jiankui, Zhao Kui, Zhang Baocheng, et al. Development and preliminary experiments of copper-niobium sputtered low Β superconducting cavities[J]. High Energy Physics and Nuclear Physics, 2001, 25(6): 582−7 (in chinese)
[15] Pan F, Tan T, Xiong P, et al. Nb sputtered 325 MHz QWR cavities for CIADS; proceedings of the Journal of Physics: Conference Series, F, 2020[C]. IOP Publishing
[16] Rosaz G, Ilyina K, Calatroni S, et al. A15 materials thin films and HiPIMS progress at CERN for SRF cavities[R]. Geneva, Switzerland: CERN, 2016
[17] C. Benvenuti , S. Calatroni , Campisi I E, et al. Study of the surface resistance of superconducting niobium films at 1.5 GHz[J]. Physica C 316 1999 153–188, 1999, 316 153–88
[18] Anders A. Deposition of niobium and other superconducting materials with high power impulse magnetron sputtering: Concept and first results[J]. 2011
[19] Malev M, Welsser D. Performance of Nb-coated 150 NHz QWR crippled by electron-stimulated desorption[J]. 6th SRF USA
[20] Svedberg E B,Jemander T S,Lin N,et al. Epitaxial growth of UHV magnetron sputtered Mo thin films on MgO(001) substrates, oxygen segregation and surface reconstructions[J]. Surface Science,1999,443(1):31−43
[21] Benvenuti C, D. Bloess, Chiaveri E, et al. Superconducting cavities produced by magnetron sputtering of niobium on copper[J]. SRF 87 USA, 1987
[22] Benvenuti C,Calatroni S,Darriulat P,et al. Study of the residual surface resistance of niobium films at 1.5 GHz[J]. Physica C Superconductivity,2001,351(4):421−8 doi: 10.1016/S0921-4534(00)01645-2
[23] Bloess D. Sputter-coated superconducting RF cavities for LEP: A technological challenge[J]. Vacuum,1996,47(6-8):597−600 doi: 10.1016/0042-207X(96)00027-9
[24] Valente-Feliciano, Anne-Marie. Superconducting RF materials other than bulk niobium: A review[J]. Superconductor Science & Technology, 2016
[25] Yang F, Zhang P, Dai J, et al. Surface preparation by mechanical polishing of the 1.3-GHz mono-cell copper cavity substrate prior chemical etching for niobium coating[J]. Radiation Detection Technology and Methods, 2020
[26] Yang F, Zhang P, Dai J, et al. Study of surface treatment of 1.3 GHz single-cell copper cavity for niobium sputtering[J]. 2020
[27] C Pira C A, A Katasevs, O Kugeler, et al. Evaluation of cleaning process [J]. 2018
[28] Ma Yongsheng,Yang Yuchen,Jing Yongmiao,et al. A review of advances in the study of thin film defects[J]. Surface Technology,2021,50(3):91−100 (马永胜,杨雨晨,景泳淼,等. 薄膜缺陷研究进展综述[J]. 表面技术,2021,50(3):91−100(in chinese) doi: 10.16490/j.cnki.issn.1001-3660.2021.03.008 Ma Yongsheng, Yang Yuchen, Jing Yongmiao, et al. A review of advances in the study of thin film defects[J]. Surface Technology, 2021, 50(3): 91−100 doi: 10.16490/j.cnki.issn.1001-3660.2021.03.008
[29] Wildes A R,Mayer J,Theis-Bröhl K. The growth and structure of epitaxial niobium on sapphire[J]. Thin Solid Films,2001,401(1):7−34