[1] Villanueva G,Vazquez-Mena O,van den Boogaart M A F,et al. Etching of sub-micrometer structures through Stencil[J]. Microelectronic Engineering,2008,85(5-6):1010−1014 doi: 10.1016/j.mee.2007.12.068
[2] Viallet B,Grisolia J,Ressier L,et al. Stencil-assisted reactive ion etching for micro and Nano patterning[J]. Microelectronic Engineering,2008,85(8):1705−1708 doi: 10.1016/j.mee.2008.04.027
[3] Dumas C,Grisolia J,Ressier L,et al. Synthesis of localized 2D-layers of silicon nanoparticles embedded in a SiO2 layer by a stencil-masked ultra-low energy ion implantation process[J]. Physica Status Solidi (A),2007,204(2):487−491 doi: 10.1002/pssa.200673232
[4] Villanueva L G,Martin-Olmos C,Vazquez-Mena O,et al. Localized Ion implantation through micro/nanostencil masks[J]. IEEE Transactions on Nanotechnology,2011,10(5):940−946 doi: 10.1109/TNANO.2010.2090171
[5] Chou S Y,Krauss P R,Renstrom P J. Imprint lithography with 25-nanometer resolution[J]. Science,1996,272(5258):85−87 doi: 10.1126/science.272.5258.85
[6] Villanueva L,Vazquez-Mena O,Martin-Olmos C,et al. Resistless fabrication of nanoimprint lithography (NIL) stamps using Nano-stencil lithography[J]. Micromachines,2013,4(4):370−377 doi: 10.3390/mi4040370
[7] Schallenberg T,Borzenko T,Schmidt G,et al. In situ size-control of CdZnSe Nano-islands using shadow masks[J]. Journal of Applied Physics,2004,95(1):311−315 doi: 10.1063/1.1631071
[8] Schallenberg T,Molenkamp L W,Karczewski G. Molecular beam epitaxy of compound materials through shadow masks[J]. Physical Review B,2004,70(15):155328 doi: 10.1103/PhysRevB.70.155328
[9] Köhler J,Albrecht M,Musil C R,et al. Direct growth of nanostructures by deposition through an Si3N4 shadow mask[J]. Physica E:Low-dimensional Systems and Nanostructures,1999,4(3):196−200 doi: 10.1016/S1386-9477(99)00007-7
[10] Shin H J,Choi J H,Yang H J,et al. Patterning of ferroelectric nanodot arrays using a silicon nitride shadow mask[J]. Applied Physics Letters,2005,87(11):113114 doi: 10.1063/1.2048818
[11] Salis G,Fuhrer A,Schlittler R R,et al. Temperature dependence of the nonlocal voltage in an Fe/GaAs electrical spin-injection device[J]. Physical Review B,2010,81(20):205323 doi: 10.1103/PhysRevB.81.205323
[12] Du K,Ding J J,Liu Y Y,et al. Stencil lithography for scalable micro- and nanomanufacturing[J]. Micromachines,2017,8(4):131 doi: 10.3390/mi8040131
[13] Vazquez-Mena O,Gross L,Xie S,et al. Resistless nanofabrication by stencil lithography: A review[J]. Microelectronic Engineering,2015,132:236−254 doi: 10.1016/j.mee.2014.08.003
[14] Allenspach R,Bischof A,Stampanoni M,et al. Growing thin magnetic films with a mask: Distinguishing between magnetic and instrumental asymmetries[J]. Applied Physics Letters,1992,60(15):1908−1910 doi: 10.1063/1.107150
[15] Schallenberg T,Schumacher C,Faschinger W. In situ structuring during MBE regrowth with shadow masks[J]. Physica E:Low-dimensional Systems and Nanostructures,2002,13(2-4):1212−1215 doi: 10.1016/S1386-9477(02)00338-7
[16] Speets E A,te Riele P,van den Boogaart M A F,et al. Formation of metal Nano- and micropatterns on self-assembled monolayers by pulsed laser deposition through nanostencils and electroless deposition[J]. Advanced Functional Materials,2006,16(10):1337−1342 doi: 10.1002/adfm.200500933
[17] Cojocaru C V,Harnagea C,Rosei F,et al. Complex oxide nanostructures by pulsed laser deposition through nanostencils[J]. Applied Physics Letters,2005,86(18):183107 doi: 10.1063/1.1923764
[18] Cojocaru C, Harnagea C, Pignolet A, et al. Patterning of functional materials by pulsed laser deposition through nanostencils[C]//2006 IEEE Conference on Emerging Technologies - Nanoelectronics, Singapore: IEEE, 2006: 283-288.
[19] Langston M C,Usui T,Prinz F B. Mechanical masking of films deposited by atomic layer deposition[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2012,30(1):01A153
[20] Zhang C,Kalliomäki J,Leskelä M,et al. Patterned films by atomic layer deposition using Parafilm as a mask[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2018,36(1):01B102
[21] Astaneh S H,Sukotjo C,Takoudis C G,et al. Simple masking method for selective atomic layer deposition of thin films[J]. Journal of Vacuum Science & Technology B,2020,38(2):025001
[22] Ingle F W. A shadow mask for sputtered films[J]. Review of Scientific Instruments,1974,45(11):1460−1461 doi: 10.1063/1.1686529
[23] Barnabé A,Lalanne M,Presmanes L,et al. Structured ZnO-based contacts deposited by non-reactive rf magnetron sputtering on ultra-thin SiO2/Si through a stencil mask[J]. Thin Solid Films,2009,518(4):1044−1047 doi: 10.1016/j.tsf.2009.03.232
[24] Tokura Y,Kawasaki M,Nagaosa N. Emergent functions of quantum materials[J]. Nature Physics,2017,13(11):1056−1068 doi: 10.1038/nphys4274
[25] He Q L,Hughes T L,Armitage N P,et al. Topological spintronics and magnetoelectronics[J]. Nature Materials,2022,21(1):15−23 doi: 10.1038/s41563-021-01138-5
[26] Fu L,Kane C L,Mele E J. Topological insulators in three dimensions[J]. Physical Review Letters,2007,98(10):106803 doi: 10.1103/PhysRevLett.98.106803
[27] Zhang H J,Liu C X,Qi X L,et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics,2009,5(6):438−442 doi: 10.1038/nphys1270
[28] Qi X L,Zhang S C. Topological insulators and superconductors[J]. Reviews of Modern Physics,2011,83(4):1057−1110 doi: 10.1103/RevModPhys.83.1057
[29] Hsieh D,Qian D,Wray L,et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature,2008,452(7190):970−974 doi: 10.1038/nature06843
[30] Tokura Y,Yasuda K,Tsukazaki A. Magnetic topological insulators[J]. Nature Reviews Physics,2019,1(2):126−143 doi: 10.1038/s42254-018-0011-5
[31] Hasan M Z,Kane C L. Colloquium: Topological insulators[J]. Reviews of Modern Physics,2010,82(4):3045−3067 doi: 10.1103/RevModPhys.82.3045
[32] Yan B H,Felser C. Topological materials: Weyl semimetals[J]. Annual Review of Condensed Matter Physics,2017,8(1):337−354 doi: 10.1146/annurev-conmatphys-031016-025458
[33] Liu Z K,Zhou B,Zhang Y,et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi[J]. Science,2014,343(6173):864−867 doi: 10.1126/science.1245085
[34] Lv B Q,Weng H M,Fu B B,et al. Experimental discovery of Weyl semimetal TaAs[J]. Physical Review X,2015,5(3):031013 doi: 10.1103/PhysRevX.5.031013
[35] Okamura Y,Minami S,Kato Y,et al. Giant magneto-optical responses in magnetic Weyl semimetal Co3Sn2S2[J]. Nature Communications,2020,11(1):4619 doi: 10.1038/s41467-020-18470-0
[36] Liu D F,Liang A J,Liu E K,et al. Magnetic Weyl semimetal phase in a Kagomé crystal[J]. Science,2019,365(6459):1282−1285 doi: 10.1126/science.aav2873
[37] Xu S Y,Liu C,Kushwaha S K,et al. Observation of Fermi arc surface states in a topological metal[J]. Science,2015,347(6219):294−298 doi: 10.1126/science.1256742
[38] He Q L,Pan L,Stern A L,et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure[J]. Science,2017,357(6348):294−299 doi: 10.1126/science.aag2792
[39] Wiedenmann J,Bocquillon E,Deacon R S,et al. 4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions[J]. Nature Communications,2016,7:10303 doi: 10.1038/ncomms10303
[40] Liu C X,Sau J D,Stanescu T D,et al. Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks[J]. Physical Review B,2017,96(7):075161 doi: 10.1103/PhysRevB.96.075161
[41] Wang M X,Liu C H,Xu J P,et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films[J]. Science,2012,336(6077):52−55 doi: 10.1126/science.1216466
[42] Gazibegovic S,Car D,Zhang H,et al. RETRACTED ARTICLE: Epitaxy of advanced nanowire quantum devices[J]. Nature,2017,548(7668):434−438 doi: 10.1038/nature23468
[43] Wang D F,Kong L Y,Fan P,et al. Evidence for Majorana bound states in an iron-based superconductor[J]. Science,2018,362(6412):333−335 doi: 10.1126/science.aao1797
[44] Xu J P,Wang M X,Liu Z L,et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure[J]. Physical Review Letters,2015,114(1):017001 doi: 10.1103/PhysRevLett.114.017001
[45] Rokhinson L P,Liu X Y,Furdyna J K. The fractional a. c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles[J]. Nature Physics,2012,8(11):795−799 doi: 10.1038/nphys2429
[46] Wang E Y,Ding H,Fedorov A V,et al. Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor[J]. Nature Physics,2013,9(10):621−625 doi: 10.1038/nphys2744
[47] Sun H H,Zhang K W,Hu L H,et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor[J]. Physical Review Letters,2016,116(25):257003 doi: 10.1103/PhysRevLett.116.257003
[48] Xu S Y,Alidoust N,Belopolski I,et al. Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor[J]. Nature Physics,2014,10(12):943−950 doi: 10.1038/nphys3139
[49] Fu L,Kane C L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator[J]. Physical Review Letters,2008,100(9):096407 doi: 10.1103/PhysRevLett.100.096407
[50] Sato M,Ando Y. Topological superconductors: a review[J]. Reports on Progress in Physics,2017,80(7):076501 doi: 10.1088/1361-6633/aa6ac7
[51] Williams J R,Bestwick A J,Gallagher P,et al. Unconventional Josephson effect in hybrid superconductor-topological insulator devices[J]. Physical Review Letters,2012,109(5):056803 doi: 10.1103/PhysRevLett.109.056803
[52] Ashworth C. 2D materials: The thick and the thin[J]. Nature Reviews Materials,2018,3(4):18019 doi: 10.1038/natrevmats.2018.19
[53] Wilson N P,Yao W,Shan J,et al. Excitons and emergent quantum phenomena in stacked 2D semiconductors[J]. Nature,2021,599(7885):383−392 doi: 10.1038/s41586-021-03979-1
[54] Liu Y,Duan X D,Shin H J,et al. Promises and prospects of two-dimensional transistors[J]. Nature,2021,591(7848):43−53 doi: 10.1038/s41586-021-03339-z
[55] Li X K,Collignon C,Xu L C,et al. Chiral domain walls of Mn3Sn and their memory[J]. Nature Communications,2019,10(1):3021 doi: 10.1038/s41467-019-10815-8
[56] Liu E K,Sun Y,Kumar N,et al. Giant anomalous Hall effect in a ferromagnetic Kagome-lattice semimetal[J]. Nature Physics,2018,14(11):1125−1131 doi: 10.1038/s41567-018-0234-5
[57] Kiyohara N,Tomita T,Nakatsuji S. Giant anomalous hall effect in the chiral antiferromagnet Mn3Ge[J]. Physical Review Applied,2016,5(6):064009 doi: 10.1103/PhysRevApplied.5.064009
[58] Nayak A K,Fischer J E,Sun Y,et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge[J]. Science Advances,2016,2(4):e1501870 doi: 10.1126/sciadv.1501870
[59] Muhlbauer S,Binz B,Jonietz F,et al. Skyrmion lattice in a chiral magnet[J]. Science,2009,323(5916):915−919 doi: 10.1126/science.1166767
[60] Reyren N,Thiel S,Caviglia A D,et al. Superconducting interfaces between insulating oxides[J]. Science,2007,317(5842):1196−1199 doi: 10.1126/science.1146006
[61] He Q L,Liu H C,He M Q,et al. Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure[J]. Nature Communications,2014,5:4247 doi: 10.1038/ncomms5247
[62] Kim N H,Jung J,Cho J,et al. Interfacial Dzyaloshinskii-Moriya interaction, surface anisotropy energy, and spin pumping at spin orbit coupled Ir/Co interface[J]. Applied Physics Letters,2016,108(14):142406 doi: 10.1063/1.4945685
[63] Yang H X,Thiaville A,Rohart S,et al. Anatomy of dzyaloshinskii-moriya interaction at Co/Pt interfaces[J]. Physical Review Letters,2015,115(26):267210 doi: 10.1103/PhysRevLett.115.267210
[64] He Q L,Yin G,Grutter A J,et al. Exchange-biasing topological charges by antiferromagnetism[J]. Nature Communications,2018,9(1):2767 doi: 10.1038/s41467-018-05166-9
[65] Pan L,Grutter A,Zhang P,et al. Observation of quantum anomalous hall effect and exchange interaction in topological insulator/antiferromagnet heterostructure[J]. Advanced Materials,2020,32(34):2001460 doi: 10.1002/adma.202001460
[66] He Q L,Kou X F,Grutter A J,et al. Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures[J]. Nature Materials,2017,16(1):94−100 doi: 10.1038/nmat4783
[67] Lee C,Katmis F,Jarillo-Herrero P,et al. Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet[J]. Nature Communications,2016,7:12014 doi: 10.1038/ncomms12014
[68] Katmis F,Lauter V,Nogueira F S,et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling[J]. Nature,2016,533(7604):513−516 doi: 10.1038/nature17635
[69] Yang W M,Yang S,Zhang Q H,et al. Proximity effect between a topological insulator and a magnetic insulator with large perpendicular anisotropy[J]. Applied Physics Letters,2014,105(9):092411 doi: 10.1063/1.4895073
[70] Vazquez-Mena O,Sannomiya T,Villanueva L G,et al. Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications[J]. ACS Nano,2011,5(2):844−853 doi: 10.1021/nn1019253
[71] Vazquez-Mena O,Sannomiya T,Tosun M,et al. High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks[J]. ACS Nano,2012,6(6):5474−5481 doi: 10.1021/nn301358n
[72] Hyun W J,Secor E B,Hersam M C,et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics[J]. Advanced Materials,2015,27(1):109−115 doi: 10.1002/adma.201404133
[73] Azimi S,Song J,Li C J,et al. Nanoscale lithography of LaAlO3/SrTiO3 wires using silicon stencil masks[J]. Nanotechnology,2014,25(44):445301 doi: 10.1088/0957-4484/25/44/445301
[74] Deshmukh M M,Ralph D C,Thomas M,et al. Nanofabrication using a stencil mask[J]. Applied Physics Letters,1999,75(11):1631−1633 doi: 10.1063/1.124777
[75] Deng T,Li M W,Chen J,et al. Controllable fabrication of pyramidal silicon nanopore arrays and nanoslits for nanostencil lithography[J]. The Journal of Physical Chemistry C,2014,118(31):18110−18115 doi: 10.1021/jp503203b
[76] Blech V,Nobuyuki T,Kim B. Nanostenciling through a cm2-wide silicon membrane[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena,2006,24(1):55−58
[77] Kölbel M,Tjerkstra R W,Kim G,et al. Self-assembled monolayer coatings on nanostencils for the reduction of materials adhesion[J]. Advanced Functional Materials,2003,13(3):219−224 doi: 10.1002/adfm.200390033
[78] Kölbel M,Tjerkstra R W,Brugger J,et al. Shadow-mask evaporation through monolayer-modified nanostencils[J]. Nano Letters,2002,2(12):1339−1343 doi: 10.1021/nl025784o
[79] Savu V,Kivioja J,Ahopelto J,et al. Quick and clean: stencil lithography for wafer-scale fabrication of superconducting tunnel junctions[J]. IEEE Transactions on Applied Superconductivity,2009,19(3):242−244 doi: 10.1109/TASC.2009.2019075
[80] Allain A,Kang J H,Banerjee K,et al. Electrical contacts to two-dimensional semiconductors[J]. Nature Materials,2015,14(12):1195−1205 doi: 10.1038/nmat4452
[81] Kwon S Y. Integrating 2D materials and metal electrodes[J]. Nature Electronics,2022,5(5):259−260 doi: 10.1038/s41928-022-00770-6
[82] Jain A,Bharadwaj P,Heeg S,et al. Minimizing residues and strain in 2D materials transferred from PDMS[J]. Nanotechnology,2018,29(26):265203 doi: 10.1088/1361-6528/aabd90
[83] Staley N,Wang H,Puls C,et al. Lithography-free fabrication of graphene devices[J]. Applied Physics Letters,2007,90(14):143518 doi: 10.1063/1.2719607
[84] Bao W Z,Liu G,Zhao Z,et al. Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices[J]. Nano Research,2010,3(2):98−102 doi: 10.1007/s12274-010-1013-5
[85] Chen H,Zhu W G,Xiao D,et al. CO oxidation facilitated by robust surface states on Au-covered topological insulators[J]. Physical Review Letters,2011,107(5):056804 doi: 10.1103/PhysRevLett.107.056804
[86] He Q L,Lai Y H,Lu Y,et al. Surface reactivity enhancement on a Pd/Bi2Te3 heterostructure through robust topological surface states[J]. Scientific Reports,2013,3:2497 doi: 10.1038/srep02497
[87] Schüffelgen P,Rosenbach D,Li C,et al. Selective area growth and stencil lithography for in situ fabricated quantum devices[J]. Nature Nanotechnology,2019,14(9):825−831
[88] Schmitt T W,Connolly M R,Schleenvoigt M,et al. Integration of topological insulator Josephson junctions in superconducting qubit circuits[J]. Nano Letters,2022,22(7):2595−2602 doi: 10.1021/acs.nanolett.1c04055
[89] Ohkouchi S,Nakamura Y,Ikeda N,et al. In situ mask designed for selective growth of InAs quantum dots in narrow regions developed for molecular beam epitaxy system[J]. Review of Scientific Instruments,2007,78(7):073908 doi: 10.1063/1.2756624
[90] Tun T N,Lwin M H T,Kim H H,et al. Wetting studies on Au nanowires deposited through nanostencil masks[J]. Nanotechnology,2007,18(33):335301 doi: 10.1088/0957-4484/18/33/335301
[91] Vazquez-Mena O,Villanueva L G,Savu V,et al. Analysis of the blurring in stencil lithography[J]. Nanotechnology,2009,20(41):415303 doi: 10.1088/0957-4484/20/41/415303
[92] Lishchynska M,Bourenkov V,van den Boogaart M A F,et al. Predicting mask distortion, clogging and pattern transfer for stencil lithography[J]. Microelectronic Engineering,2007,84(1):42−53 doi: 10.1016/j.mee.2006.08.003
[93] Rácz Z,Seabaugh A. Characterization and control of unconfined lateral diffusion under stencil masks[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena,2007,25(3):857−861
[94] Tiggelaar R M,Berenschot J W,Elwenspoek M C,et al. Spreading of thin-film metal patterns deposited on nonplanar surfaces using a shadow mask micromachined in Si (110)[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena,2007,25(4):1207−1216