[1] Capano M A,Trew R J,Editors G. Silicon carbide electronic materials and devices[J]. MRS Bulletin,1997,22(3):19−22 doi: 10.1557/S0883769400032711
[2] Nakamura D,Gunjishima I,Yamaguchi S,et al. Ultrahigh-quality silicon carbide single crystals[J]. Nature,2004,430(7003):1009−1012 doi: 10.1038/nature02810
[3] Moll P,Pfusterschmied G,Schneider M,et al. Biocompatible a-SiC: H-based bistable MEMS membranes with piezoelectric switching capability in fluids[J]. Journal of Microelectromechanical Systems,2022,31(3):372−383 doi: 10.1109/JMEMS.2022.3163477
[4] Xie X N,Loh K. Observation of a 6×6 superstructure on 6H-SiC (0001) by reflection high energy electron diffraction[J]. Applied Physics Letters,2000,77(21):3361−3363 doi: 10.1063/1.1328050
[5] Li L,Tsong I. Atomic structures of 6H-SiC (0001) and (000$ \stackrel{-}{1} $) surfaces[J]. Surface Science,1996,351(1-3):141−148 doi: 10.1016/0039-6028(95)01355-5
[6] Enriquez H,Derycke V,Aristov V Y,et al. 1D electronic properties in temperature-induced c (4×2) to 2×1transition on the β-SiC (100) surface[J]. Applied Surface Science,2000,162:559−564
[7] Johannesson D,Member S,IEEE,et al. Evaluation of ultrahigh-voltage 4H-SiC gate turn-off thyristors and insulated-gate bipolar transistors for high-power applications[J]. IEEE Transactions on Power Electronics,2022,37(4):4133−4147 doi: 10.1109/TPEL.2021.3122988
[8] Langpoklakpam C,Liu A C,Chu K H,et al. Review of silicon carbide processing for Power MOSFET[J]. Crystals,2022,12(2):1−27
[9] Cuong V V,Member,IEEE,et al. Amplifier based on 4H-SiC MOSFET operation at 500℃ for harsh environment applications[J]. IEEE Transactions on Power Electronics,2022,69(8):4194−4199 doi: 10.1109/TED.2022.3184663
[10] Starke U,Schardt J,Franke M. Morphology, bond saturation and reconstruction of hexagonal SiC surfaces[J]. Applied Physics A-Materials Science & Processing,1997,65(6):587−596
[11] Starke U. Non-basal plane SiC surfaces: Anisotropic structures and low-dimensional electron systems[J]. Physica Status Solidi B-Basic Solid State Physics,2009,246(7):1569−1579 doi: 10.1002/pssb.200945170
[12] Liu Zhongliang,Kang Chaoyang,Tang Jun,et al. Homoepitaxial growth of SiC thin film on 4H-SiC substrate[J]. Journal of Synthetic Crystals,2012,41(1):106−109 (刘忠良,康朝阳,唐军,等. 4H-SiC衬底表面SiC薄膜的同质外延生长[J]. 人工晶体学报,2012,41(1):106−109(in chinese) Liu Zhongliang, Kang Chaoyang, Tang Jun, et al. Homoepitaxial Growth of SiC Thin Film on 4H-SiC Substrate[J]. Journal of Synthetic Crystals, 2012, 41(1): 106-109 (in chinese)
[13] Binning G,Rohrer H,Gerber Ch,et al. Surface studies by scanning tunneling microscopy[J]. Physical Review Letters,1982(49):57−61
[14] Hass J,Heer W A d,Conrad E H. The growth and morphology of epitaxial multilayer graphene[J]. Journal of Physics:Condensed Matter,2008,20(32):323202 doi: 10.1088/0953-8984/20/32/323202
[15] Moreau E,Godey S,Wallart X,et al. High-resolution angle-resolved photoemission spectroscopy study of monolayer and bilayer graphene on the C-face of SiC[J]. Physical Review B,2013,88(7):075406 doi: 10.1103/PhysRevB.88.075406
[16] 黄筱淳. Te超薄膜在石墨烯衬底上的外延生长与电子结构调控[D]. 北京: 中国科学院大学, 2017 Huang Xiaochun. Epitaxial growth and electronic structure modulation of tellurium films on graphene[D]. Beijing: University of Chinese Academy of Sciences, 2017
[17] Kulakov M A,Henn G,Bullemcr B. SiC(0001)3 × 3-Si surface reconstruction-a new insight with a STM[J]. Surface Science,1996,346(1-3):49−54 doi: 10.1016/0039-6028(95)00919-1
[18] Li L,Tindall C,Takaoka O,et al. Structural and vibrational properties of 6H-SiC(0001) surfaces studied using STM/HREELS[J]. Surface Science,1997,385(1):60−65 doi: 10.1016/S0039-6028(97)00143-X
[19] Hoster H E,Kulakov M A,Bullemer B. Morphology and atomic structure of the SiC(000$ \stackrel{-}{1} $) surface reconstruction[J]. Surface Science,1997,382:L658−L665 doi: 10.1016/S0039-6028(97)00084-8
[20] Gasparov V A,Riehl-Chudoba M,Schröter,B,et al. Scanning tunneling spectroscopy on the 6H-SiC(0001)(3 × 3) surface[J]. Europhysics Letters,2000,51(5):527−533 doi: 10.1209/epl/i2000-00370-1
[21] Stroscio J A,Fccnstra,R M,Fein A P. Electronic structure of the Si(111) 2 × 1 surface by scanning-Tu»cling microscopy[J]. Physical Review Letters,1986,57(20):2579−2582 doi: 10.1103/PhysRevLett.57.2579
[22] Martrou D,Leoni T,Chaumeton F,et al. Giant (12×12) and (4×8) reconstructions of the 6H-SiC(0001) surface obtained by progressive enrichment in Si atoms[J]. Physical Review B,2018,97(8):081302 doi: 10.1103/PhysRevB.97.081302
[23] Hiebel F,Magaud L,Mallet P,et al. Structure and stability of the interface between graphene and 6H-SiC(000$ \stackrel{-}{1} $) (3 × 3): an STM and ab initio study[J]. Journal of Physics D:Applied Physics,2012,45(15):154003 doi: 10.1088/0022-3727/45/15/154003
[24] Owman F,Mårtensson P. STM study of the SiC(0001)$ \sqrt{\text{3}}\text{×}\sqrt{\text{3}} $surface[J]. Surface Science,1995,330(1):L639−L645 doi: 10.1016/0039-6028(95)00427-0
[25] Owman F,Mårtensson P. Scanning tunneling microscopy study of SiC(0001) surface reconstructions[J]. Journal of Vacuum Science & Technology B,1996,14(2):933−937
[26] Johansson L I,Owman F,Mårtensson P. High-resolution core-level study of 6H-SiC(0001)[J]. Physical Review B,1996,53(20):13793−13802 doi: 10.1103/PhysRevB.53.13793
[27] Li L,Hasegawa Y,Sakurai T. Field-ion scanning tunneling microscopy study of the atomic structure of 6H-SiC(0001) surfaces cleaned by in situ Si molecular beam etching[J]. Journal of Applied Physics,1996,80(4):2524−2526 doi: 10.1063/1.363037
[28] Chang C S,Tsong I S T,Wang Y C,et al. Scanning tunneling microscopy and spectroscopy of cubic β-SiC(111) surfaces[J]. Surface Science,1991,256(3):354−360 doi: 10.1016/0039-6028(91)90877-U
[29] Tsai M H,Chang,C S,Dow,J D,et al. Electronic contributions to scanning-tunneling-microscopy images of an annealed β-SiC(111)surfac[J]. Physical Review B,1992,45(3):1327−1332 doi: 10.1103/PhysRevB.45.1327
[30] Owman F,Mårtensson P. The SiC(0001)$ 6\sqrt{\text{3}}\text{×6}\sqrt{\text{3}} $ reconstruction studied with STM and LEED[J]. Surface Science,1996,369(1-3):126−136 doi: 10.1016/S0039-6028(96)00919-3
[31] Tok E S,Ong W J,Wee A T S. 6H-SiC(0 0 0 1) phase transition: evolution of the (6 × 6) magic clusters[J]. Surface Science,2004,558(1-3):145−158 doi: 10.1016/j.susc.2004.03.062
[32] Chen W,Loh K P,Xu H,et al. Nanoparticle dispersion on reconstructed carbon nanomeshes[J]. Langmuir,2004,20(25):10779−10784 doi: 10.1021/la048530m
[33] Chen W,Xu H,Liu L,et al. Atomic structure of the 6H–SiC(0001) nanomesh[J]. Surface Science,2005,596(1-3):176−186 doi: 10.1016/j.susc.2005.09.013
[34] Emtsev K V,Bostwick A,Horn K,et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nature Materials,2009,8(3):203−207 doi: 10.1038/nmat2382
[35] Hu Jugang,Jia zhenyu,Li Shaochun. Electron transport property of epitaixial bilayer graphene on SiC substrate[J]. Acta Physica Sinica,2022,71(12):127204 (胡聚罡,贾振宇,李绍春. 碳化硅衬底上外延双层石墨烯的电输运性质[J]. 物理学报,2022,71(12):127204(in chinese) doi: 10.7498/aps.71.20220062 Hu Jugang, Jia zhenyu, Li Shaochun. Electron transport property of epitaixial bilayer graphene on SiC substrate[J]. Acta Physica Sinica, 2022, 71(12): 127204 (in chinese) doi: 10.7498/aps.71.20220062
[36] Lin Y M,Dimitrakopoulos C,Jenkins K A,et al. 100-GHz transistors from wafer-scale epitaxial graphene[J]. Science,2010,327(5966):662−662 doi: 10.1126/science.1184289
[37] Seungchul K,Jisoon J,Joon C H,et al. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide[J]. Physical Review Letters,2008,100(17):17802
[38] Zhou S Y,Gweon G H,Fedorov A V,et al. Substrate-induced bandgap opening in epitaxial graphene[J]. Natures Materials,2007,6(10):770−775 doi: 10.1038/nmat2003
[39] Varchon F,Feng R,Hass J,et al. Electronic structure of epitaxial graphene layers on SiC: effect of the substrate[J]. Physical Review Letters,2007,99(12):126805 doi: 10.1103/PhysRevLett.99.126805
[40] Rutter G M,Guisinger N P,Crain J N,et al. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy[J]. Physical Review B,2007,76(23):235416 doi: 10.1103/PhysRevB.76.235416
[41] Hu T W,Ma F,Ma D Y,et al. Evidence of atomically resolved 6 ×6 buffer layer with long-range order and short-range disorder during formation of graphene on 6H-SiC by thermal decomposition[J]. Applied Physics Letters,2013,102(17):171910 doi: 10.1063/1.4804290
[42] Choi J,Lee H,Kim S. Atomic-scale investigation of epitaxial graphene grown on 6H-SiC(0001) using scanning tunneling microscopy and spectroscopy[J]. Journal of Physical Chemistry C,2010,114(31):13344−13348 doi: 10.1021/jp1048716
[43] Hu T W,Ma D Y,Ma F,et al. Preferred armchair edges of epitaxial graphene on 6H-SiC(0001) by thermal decomposition[J]. Applied Physics Letters,2012,101(24):241903 doi: 10.1063/1.4769967
[44] Mallet P,Varchon F,Naud C,et al. Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy[J]. Physical Review B,2007,76(4):041403
[45] Poon S W,Chen W,Wee A T S,et al. Growth dynamics and kinetics of monolayer and multilayer graphene on a 6H-SiC(0001) substrate[J]. Physical Chemistry Chemical Physics,2010,12(41):13522−13533 doi: 10.1039/b927452a
[46] Tsukamoto T,Hirai M,Kusaka M,et al. Structural analysis of the heat-treated 4H(6H)-SiC(0001)Si surface[J]. Surface Science,1997,37(2-3):316−320
[47] Tsukamoto T,Hirai M,Kusaka M,et al. Annealing effect on surfaces of 4H(6H)-SiC(0001)Si face[J]. Applied Surface Science,1997,113:467−471
[48] Kulakov M A,Hoster,H,Henn,G,et al. Morphology and atomic structure of SiC(0001) surfaces: a UHV STM study[J]. Materials Science and Engineering B,1997,46(1-3):227−230 doi: 10.1016/S0921-5107(96)01980-0
[49] Schardt J,Bernhardt J,Starke U,et al. Crystallography of the 3×3 surface reconstruction of 3C-SiC(111), 4H-SiC(0001), and 6H-SiC(0001) surfaces retrieved by low-energy electron diffraction[J]. Physical Review B,2000,62(15):10335−10344 doi: 10.1103/PhysRevB.62.10335
[50] Starke U,Riedl C. Epitaxial graphene on SiC(0001) and SiC(000$ \stackrel{-}{1} $): from surface reconstructions to carbon electronics[J]. Journal of Physica condensed Matter,2009,21(13):134016 doi: 10.1088/0953-8984/21/13/134016
[51] Kubler L,Simon L,Aubel D,et al. 6H- Aand 4H-SiC(0001) Si surface richness dosing by hydrogen etching: a way to reduce the formation temperature of reconstructions[J]. Surface Review and Letters,2003,10(1):55−63 doi: 10.1142/S0218625X03004652
[52] Riedl C,Starke U. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces[J]. Physical Review B,2007,76(24):245406 doi: 10.1103/PhysRevB.76.245406
[53] Guy O J,Lodzinski M,Teng K S,et al. Investigation of the 4H–SiC surface[J]. Applied Surface Science,2008,254(24):8098−8105 doi: 10.1016/j.apsusc.2008.03.056
[54] Bernhardt J,Nerding M,Starke U,et al. Stable surface reconstructions on 6H-SiC(000$ \stackrel{-}{1} $)[J]. Materials Science and Engineering B,1999,61-62:207−211 doi: 10.1016/S0921-5107(98)00503-0
[55] Guy O J,Pope G,Blackwood I,et al. Creating room temperature Ohmic contacts to 4H–SiC: studied by specific contact resistance measurements and X-ray photoelectron spectroscopy[J]. Surface Science,2004,573(2):253−263 doi: 10.1016/j.susc.2004.09.035
[56] Blackwood I,Teng K,Maffeïs T,et al. Investigation of annealing effects on the adsorption of Ni on 4H–SiC (0001) surfaces using scanning tunneling microscopy and spectroscopy[J]. Journal of Applied Physics,2005,98:103528 doi: 10.1063/1.2136423
[57] Laikhtman A,Baffou G,Mayne A J,et al. Scanning tunnelling microscopy imaging and spectroscopy of p-type degenerate 4H-SiC(0001)[J]. Journal of Physics:condensed Mater,2005,17(26):4015−4022 doi: 10.1088/0953-8984/17/26/002
[58] Tanaka H,Ohno S,Miki K,et al. Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy[J]. Journal of nanotechnology,2022,13:172−181
[59] Mahato J C,Das D,Das P,et al. Tuning the length/width aspect ratio of epitaxial unidirectional silicide nanowires on Si(110)-16 × 2 surface[J]. Nano Express,2021,1(2):020045
[60] Osiecki J R,Suto S,Chutia A. Periodic corner holes on the Si(111)-7×7 surface can trap silver atoms[J]. Nature Communications,2022,13(1):2973 doi: 10.1038/s41467-022-29768-6