[1] Norman J C,Jung D,Wan Y,et al. Perspective: The future of quantum dot photonic integrated circuits[J]. APL Photonics,2018,3:030901 doi: 10.1063/1.5021345
[2] Kageyama T,Nishi K,Yamaguchi M,et al. Extremely high temperature (220℃) continuous-wave operation of 1300-nm-range quantum-dot lasers[J]. 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC),2011:1−1
[3] Liu H Y,Liew S L,Badcock T,et al. p-doped 1[J]. 3μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency. Applied Physics Letters,2006,89:073113
[4] Dong B,Chen J D,Lin F Y,et al. Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long- and short-cavity feedback conditions for photonic integrated circuits[J]. Physical Review A,2021,103:033509 doi: 10.1103/PhysRevA.103.033509
[5] Chen S M,Li W,Wu J,et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon[J]. Nature Photonics,2016,10:307−311 doi: 10.1038/nphoton.2016.21
[6] Aharonovich I, Englund D, Toth M, Solid-state single-photon emitters. Nature Photonics. 2016, 10: 631.
[7] Wang H,Duan Z C,Li Y H,et al. Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter[J]. Physical Review Letters,2016,116(21):213601 doi: 10.1103/PhysRevLett.116.213601
[8] Muller M,Bounouar S,Jons K D,et al. On-demand generation of indistinguishable polarization-entangled photon pairs[J]. Nature Photonics,2014,8:224 doi: 10.1038/nphoton.2013.377
[9] Ma R M,Oulton R F. Applications of nanolasers[J]. Nature Nanotechnology,2019,14(1):12−22 doi: 10.1038/s41565-018-0320-y
[10] Hill M T,Gather M C. Advances in small lasers[J]. Nature Photonics,2014,8(12):908−918 doi: 10.1038/nphoton.2014.239
[11] Wang H, He Y M, Chung T H, et al. Towards optimal single-photon sources from polarized microcavities. Nature Photonics. 2019, 13: 770-775.
[12] Najer D,Söllner I,Sekatski P,et al. A gated quantum dot strongly coupled to an optical microcavity[J]. Nature,2019,575:622−627 doi: 10.1038/s41586-019-1709-y
[13] Huang X Y,Su R B,Yang J W,et al. Wafer-Scale Epitaxial Low Density InAs/GaAs Quantum Dot for Single Photon Emitter in Three-Inch Substrate[J]. Nanomaterials,2021,11(4):930 doi: 10.3390/nano11040930
[14] Yang Z H,Ding Z Q,Liu J,et al. High-performance distributed feedback quantum dot lasers with laterally coupled dielectric gratings[J]. Photonics Research,2022,10(5):1271 doi: 10.1364/PRJ.454200
[15] Wan Y,Norman J C,Tong Y,et al. 1[J]. 3 µ m Quantum Dot-Distributed Feedback Lasers Directly Grown on (001) Si. Laser & Photonics Reviews,2020,14:2000037
[16] Li Q Z,Wang X,Zhang Z Y,et al. Development of Modulation p-Doped 1310 nm InAs/GaAs Quantum Dot Laser Materials and Ultrashort Cavity Fabry–Perot and Distributed-Feedback Laser Diodes[J]. ACS Photonics,2018,5:1084−1093 doi: 10.1021/acsphotonics.7b01355
[17] Zhong H C, Yang J W, Ding Z Q, et al. Ultra-low threshold continuous-wave quantum dot mini-BIC lasers[J].Light: Science & Applications, 2023: DOI: 10.1038/s41377-023-01130-5
[18] Chen Z H,Yin X F,Jin J C,et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors[J]. Science Bulletin,2022,67(4):359−366 doi: 10.1016/j.scib.2021.10.020
[19] Huang X Y,Yang J W,Song C K,et al. Self-assembled InAs/GaAs single quantum dots with suppressed InGaAs wetting layer states and low excitonic fine structure splitting for quantum memory[J]. Nanophotonics,2022,11(13):3093−3100 doi: 10.1515/nanoph-2022-0120
[20] Löbl M C, Scholz S, Söllner I, et al. Excitons in InGaAs quantum dots without electron wetting layer states. Communications Physics, 2019, 2 (1).