[1] Smith D R,Pendry J B,Wiltshire M C K. Metamaterials and negative refractive index[J]. Science,2004,305(5685):788−792 doi: 10.1126/science.1096796
[2] Joannopoulos J D, Johnson S G, Winn J N, et al. Photonic crystals: molding the flow of light (2nd edition)[M]. Princeton: Princeton University Press, 2008
[3] Toussaint Jr K C,Roxworthy B J,Michaud S,et al. Plasmonic nanoantennas: from nanotweezers to plasmonic photography[J]. Optics and Photonics News,2015,26(6):24−31 doi: 10.1364/OPN.26.6.000024
[4] Liang Y Z,Zhang S,Cao X,et al. Free-standing plasmonic metal-dielectric-metal bandpass filter with high transmission efficiency[J]. Scientific Reports,2017,7(1):4357 doi: 10.1038/s41598-017-04540-9
[5] Bose J C. On the rotation of plane of polarisation of electric wave by a twisted structure[J]. Proceedings of the Royal Society of London,1898,63(389-400):146−152 doi: 10.1098/rspl.1898.0019
[6] Lindell I V,Sihvola A H,Kurkijarvi J. Karl F. Lindman: the last hertzian, and a harbinger of electromagnetic chirality[J]. IEEE Antennas and Propagation Magazine,1992,34(3):24−30 doi: 10.1109/74.153530
[7] Veselago V G. The electrodynamics of substances with simultaneously negative values of ϵ and µ[J]. Soviet Physics Uspekhi,1968,10(4):509−514 doi: 10.1070/PU1968v010n04ABEH003699
[8] Pendry J B,Schurig D,Smith D R. Controlling electromagnetic fields[J]. Science,2006,312(5781):1780−1782 doi: 10.1126/science.1125907
[9] Schurig D,Mock J J,Justice B J,et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science,2006,314(5801):977−980 doi: 10.1126/science.1133628
[10] Liu Y M,Zhang X. Metamaterials: a new frontier of science and technology[J]. Chemical Society Reviews,2011,40(5):2494−2507 doi: 10.1039/c0cs00184h
[11] Maier S A. Plasmonics: fundamentals and applications[M]. New York: Springer, 2007
[12] Li W B,Meng F,Chen Y F,et al. Topology optimization of photonic and phononic crystals and metamaterials: a review[J]. Advanced Theory and Simulations,2019,2(7):1900017 doi: 10.1002/adts.201900017
[13] Campbell S D,Sell D,Jenkins R P,et al. Review of numerical optimization techniques for meta-device design [Invited][J]. Optical Materials Express,2019,9(4):1842−1863 doi: 10.1364/OME.9.001842
[14] Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa: Omnipress, 2010
[15] Srivastava N,Hinton G,Krizhevsky A,et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research,2014,15(1):1929−1958
[16] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille: JMLR. org, 2015: 448-456
[17] Sanchez-Lengeling B,Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering[J]. Science,2018,361(6400):360−365 doi: 10.1126/science.aat2663
[18] Gawehn E,Hiss J A,Schneider G. Deep learning in drug discovery[J]. Molecular informatics,2016,35(1):3−14 doi: 10.1002/minf.201501008
[19] Zeng M X,Yuan S,Huang D L,et al. Accelerated design of catalytic water-cleaning nanomotors via machine learning[J]. ACS Applied Materials & Interfaces,2019,11(43):40099−40106
[20] Rahmani B,Loterie D,Konstantinou G,et al. Multimode optical fiber transmission with a deep learning network[J]. Light:Science & Applications,2018,7:69
[21] Asano T,Noda S. Optimization of photonic crystal nanocavities based on deep learning[J]. Optics Express,2018,26(25):32704−32717 doi: 10.1364/OE.26.032704
[22] Malkiel I,Mrejen M,Nagler A,et al. Plasmonic nanostructure design and characterization via Deep Learning[J]. Light:Science & Applications,2018,7:60
[23] Ma W,Cheng F,Liu Y M. Deep-learning-enabled on-demand design of chiral metamaterials[J]. ACS Nano,2018,12(6):6326−6334 doi: 10.1021/acsnano.8b03569
[24] Zhu D Y,Liu Z C,Raju L,et al. Building multifunctional metasystems via algorithmic construction[J]. ACS Nano,2021,15(2):2318−2326 doi: 10.1021/acsnano.0c09424
[25] An S S,Fowler C,Zheng B W,et al. A deep learning approach for objective-driven all-dielectric metasurface design[J]. ACS Photonics,2019,6(12):3196−3207 doi: 10.1021/acsphotonics.9b00966
[26] Molesky S,Lin Z,Piggott A Y,et al. Inverse design in nanophotonics[J]. Nature Photonics,2018,12(11):659−670 doi: 10.1038/s41566-018-0246-9
[27] Liu Z C,Zhu D Y,Lee K T,et al. Compounding meta-atoms into metamolecules with hybrid artificial intelligence techniques[J]. Advanced Materials,2020,32(6):1904790 doi: 10.1002/adma.201904790
[28] Wiecha P R,Muskens O L. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures[J]. Nano Letters,2020,20(1):329−338 doi: 10.1021/acs.nanolett.9b03971
[29] Peurifoy J,Shen Y C,Jing L,et al. Nanophotonic particle simulation and inverse design using artificial neural networks[J]. Science Advances,2018,4(6):eaar4206 doi: 10.1126/sciadv.aar4206
[30] Guo Q,Shi Z J,Huang Y W,et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(46):22959−22965 doi: 10.1073/pnas.1912154116
[31] Martins A,Li K Z,Li J T,et al. On metalenses with arbitrarily wide field of view[J]. ACS Photonics,2020,7(8):2073−2079 doi: 10.1021/acsphotonics.0c00479
[32] Zhang Q,Liu C,Wan X,et al. Machine-learning designs of anisotropic digital coding metasurfaces[J]. Advanced Theory and Simulations,2019,2(2):1800132 doi: 10.1002/adts.201800132
[33] Xu D,Luo Y,Luo J,et al. Efficient design of a dielectric metasurface with transfer learning and genetic algorithm[J]. Optical Materials Express,2021,11(7):1852−1862 doi: 10.1364/OME.427426
[34] Liu D J,Tan Y X,Khoram E,et al. Training deep neural networks for the inverse design of nanophotonic structures[J]. ACS Photonics,2018,5(4):1365−1369 doi: 10.1021/acsphotonics.7b01377
[35] An S S,Zheng B W,Tang H,et al. Multifunctional metasurface design with a generative adversarial network[J]. Advanced Optical Materials,2021,9(5):2001433 doi: 10.1002/adom.202001433
[36] Yeung C,Tsai R,Pham B,et al. Global inverse design across multiple photonic structure classes using generative deep learning[J]. Advanced Optical Materials,2021,9(20):2100548 doi: 10.1002/adom.202100548
[37] Chen X Y,Xie Y F,Sheng Y C,et al. Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning[J]. Nature Communications,2021,12(1):5953 doi: 10.1038/s41467-021-26230-x
[38] Khoram E,Chen A,Liu D J,et al. Nanophotonic media for artificial neural inference[J]. Photonics Research,2019,7(8):823−827 doi: 10.1364/PRJ.7.000823
[39] Shen Y C,Harris N C,Skirlo S,et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics,2017,11(7):441−446 doi: 10.1038/nphoton.2017.93
[40] Feldmann J,Youngblood N,Wright C D,et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature,2019,569(7755):208−214 doi: 10.1038/s41586-019-1157-8
[41] Lin X,Rivenson Y,Yardimci N T,et al. All-optical machine learning using diffractive deep neural networks[J]. Science,2018,361(6406):1004−1008 doi: 10.1126/science.aat8084
[42] Bao Q L,Zhang H,Ni Z H,et al. Monolayer graphene as a saturable absorber in a mode-locked laser[J]. Nano Research,2011,4(3):297−307 doi: 10.1007/s12274-010-0082-9
[43] Tait A N,de Lima T F,Zhou E,et al. Neuromorphic photonic networks using silicon photonic weight banks[J]. Scientific Reports,2017,7(1):7430 doi: 10.1038/s41598-017-07754-z
[44] Williamson I A D,Hughes T W,Minkov M,et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks[J]. IEEE Journal of Selected Topics in Quantum Electronics,2020,26(1):7700412
[45] Shastri B J,Nahmias M A,Tait A N,et al. Spike processing with a graphene excitable laser[J]. Scientific Reports,2016,6:19126 doi: 10.1038/srep19126
[46] Estakhri N M,Edwards B,Engheta N. Inverse-designed metastructures that solve equations[J]. Science,2019,363(6433):1333−1338 doi: 10.1126/science.aaw2498
[47] Hughes T W,Williamson I A D,Minkov M,et al. Wave physics as an analog recurrent neural network[J]. Science Advances,2019,5(12):eaay6946 doi: 10.1126/sciadv.aay6946