[1] |
Beaty D W,Grady M M,Mcsween H Y. The potential science and engineering value of samples delivered to Earth by Mars sample return[J]. Meteoritics & Planetary Science,2019,54(3):667−671
|
[2] |
Cherkasov I I,Mikheev V V,Smorodinov M I,et al. 20 years of soviet investigation of lunar soils[J]. Soil Mechanics & Foundation Engineering,1986,23(6):241−244
|
[3] |
Tang J Y,Deng Z Q,Chen C B,et al. Review of planetary drilling & coring technologies oriented towards deep space exploration[J]. Journal of Astronautics,2017,38(6):555−565 (唐钧跃,邓宗全,陈崇斌,等. 面向深空探测的星球钻取采样技术综述[J]. 宇航学报,2017,38(6):555−565(in chinese)
Tang J Y, Deng Z Q, Chen C B, et al. Review of planetary Drilling & Coring Technologies Oriented Towards Deep Space Exploration[J]. Journal of Astronautics, 2017, 38(6): 555-565
|
[4] |
Wang Y J,Zhao C X,Li D T,et al. Progress and development proposals of space dust detection[J]. Science and Technology Foresight,2022,1(1):38−50 (王永军,赵呈选,李得天,等. 空间尘埃探测进展与发展建议[J]. 前瞻科技,2022,1(1):38−50(in chinese)
Wang Y J, Zhao C X, Li D T et al. Progress and Development Proposals of Space Dust Detection[J]. Science and Technology Foresight, 2022, 1(1): 38-50
|
[5] |
欧阳自远, 月球科学概论[M]. 北京: 中国宇航出版社, 2005: 124-153
Ou-yang Z Y, Introduction to Lunar Science[M]. Beijing: China Astronautic Publishing House, 2005
|
[6] |
Kemurdzhian A L, Gromov V V, Cherrasov I I, et al. Automatic stations to study the lunar surface[R]. National Aeronautics and Space Administration, 1977
|
[7] |
Vinogradov A P. Preliminary data on lunar regolith returned by Luna-16 automatic probe[R]. NASA Technical Translation, 1971
|
[8] |
Robert Christy. The Mission of Luna 16[EB/OL]. http://www.zarya.info/Diaries/Luna/Luna16.php.
|
[9] |
Erickson R J. Luna-16: an outstanding new achievement of soviet space science[R]. Foreign Technology Division, 1970
|
[10] |
Vinogradov A P. Preliminary data on lunar soil collected by the Luna-20 automatic station[R]. NASA Technical Translation, 1973
|
[11] |
中国科学院地球化学研究所, 月质学研究进展[M]. 北京: 科学出版社, 1977: 41-48
Institute of Geochemistry. Advance in the research of lunar geology[M]. Beijing: Science Press, 1977
|
[12] |
Robert C. The Mission of Luna 20[EB/OL]. http://www.zarya.info/Diaries/Luna/Luna20.php
|
[13] |
Sagdeyev R Z, Shtern M I. Mastery of outer space in the USSR in 1976[R]. National Aeronautics And Space Administration, 1979
|
[14] |
Robert C. The mission of Luna 24 [EB/OL]. http://www.zarya.info/Diaries/Luna/Luna24.php.
|
[15] |
Mundt F D, Schreyer J M, Wampler W E, et al. Apollo lunar sample return container: summary report [R]. OAK RIDGE Y-12 PLANT, 2013
|
[16] |
Allton J H,Bagby J R,Stabekis P D,et al. Lessons learned during Apollo lunar sample quarantine and sample curation[J]. Advances in Space Research,1998,22(3):373−382 doi: 10.1016/S0273-1177(98)00034-9
|
[17] |
Allton J H. Lunar Samples: Apollo collection tools, curation handling, surveyor III and soviet luna samples [R]. Johnson Space Center, 2009
|
[18] |
Taylor L A, Schmitt H H, Carrier W D. The lunar dust problem: from liability to asset[C]. 1st Space Exploration Conference: Continuing the Voyage of Discovery, 2005
|
[19] |
Ou-yang Z Y. Scientific objectives of chinese lunar exploration project and development strategy[J]. Advance in Earth Science,2004,19(3):351−358 (欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学进展,2004,19(3):351−358(in chinese) doi: 10.3321/j.issn:1001-8166.2004.03.001
Ou-yang Z Y, Scientific Objectives of Chinese Lunar Exploration Project and Development Strategy[J]. Advance in Earth Science, 2004, 19(3): 351-358 doi: 10.3321/j.issn:1001-8166.2004.03.001
|
[20] |
Ye P J,Peng j. Deep space exploration and its prospect in china[J]. Engineering Science,2006,8(10):13−18 (叶培建,彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学,2006,8(10):13−18(in chinese) doi: 10.3969/j.issn.1009-1742.2006.10.003
Ye P J, Peng j. Deep Space Exploration and Its Prospect in China[J]. Engineering Science, 2006, 8(10): 13-18 doi: 10.3969/j.issn.1009-1742.2006.10.003
|
[21] |
Li H L,Wang C Y,Liu Y X,et al. Gathering and sealing of lunar sample in container filled with pure nitrogen[J]. Chinese Journal of Vacuum Science and Technology,2017,37(1):7−11 (李昊璘,王春勇,刘轶鑫,等. 月球样品充氮保护密封技术的研究[J]. 真空科学与技术学报,2017,37(1):7−11(in chinese)
Li H L, Wang C Y, Liu Y X, et al. Gathering and Sealing of Lunar Sample in Container Filled with Pure Nitrogen[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(1): 7-11
|
[22] |
Wang C Y,Fu Z H,Li H L,et al. The lunar sample encapsulation[J]. Vacuum & Cryogenics,2021,27(1):100 (王春勇,付朝晖,李昊璘,等. 月球样品密封封装装置[J]. 真空与低温,2021,27(1):100(in chinese)
Wang C Y, Fu Z H, Li H L, et al. The Lunar Sample Encapsulation[J]. Vacuum & Cryogenics, 2021, 27(1): 100
|
[23] |
Wang C Y,Li H L,Sun L,et al. Experimental investigation on adaptability of lunar samples vacuum sealing structure[J]. Lubrication Engineering,2017,42(6):88−91 (王春勇,李昊磷,孙亮,等. 月球样品真空密封结构适应性试验研究[J]. 润滑与密封,2017,42(6):88−91(in chinese)
Wang C Y, Li H L, Sun L, et al. Experimental Investigation on Adaptability of Lunar Samples Vacuum Sealing Structure[J]. Lubrication Engineering. 2017, 42(6): 88-91
|
[24] |
Wu X J,Wang K C,Yang Z R,et al. Study on preparation and characterization of In-Ag solders[J]. Precious Matals,2019,40(1):57−62 (吴宪吉,王克成,杨志荣,等. 铟银软钎料的制备与钎焊性研究[J]. 贵金属,2019,40(1):57−62(in chinese)
Wu X J, Wang K C, Yang Z R et al. Study on Preparation and Characterization of In-Ag solders[J]. Precious Matals, 2019, 40(1): 57-62
|
[25] |
Fu Z H,Xu M,Du Y G,et al. Noval ultra high vacuum sealing technique with soft metal knife edge for space crafts[J]. Chinese Journal of Vacuum Science and Technology,2014,34(3):221−224 (付朝晖,许旻,杜永刚,等. 极高真空环境下软金属刀口密封研究[J]. 真空科学与技术学报,2014,34(3):221−224(in chinese)
Fu Z H, Xu M, Du Y G et al. Noval ultra high vacuum sealing technique with soft metal knife edge for space crafts[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(3): 221-224
|
[26] |
Li D T,Wang Y J,Zhang H Z,et al. Applications of vacuum measurement technology in China’s space programs[J]. Space: Science & Technology,2021,1(1):21−36
|
[27] |
Li D T,Xi Z H,Wang Y G,et al. Vacuum metrology technology and its space application[J]. Chinese Journal Vacuum Science And Technology,2021,41(9):795−816 (李得天,习振华,王永军,等. 真空测试计量技术及其航天应用[J]. 真空科学与技术学报,2021,41(9):795−816(in chinese)
Li D T, Xi Z H, Wang Y G, et al. Vacuum Metrology Technology and its Space Application[J]. CHINESE JOURNAL VACUUM SCIENCE AND TECHNOLOGY, 2021, 41(9): 795-816
|
[28] |
Duxbury T C. NASA Stardust sample return mission[R]. Jet Propulsion Laboratory, 2004
|
[29] |
Zega T, Zare R N, Young E D, et al. Comet 81P/Wild 2 under a microscope[R]. Lawrence Livermore National Laboratory, 2009
|
[30] |
Willcockson W H. Stardust sample return capsule design experience[J]. Journal of Spacecraft And Rockets, 36 (3): 470-474
|
[31] |
https://solarsystem.nasa.gov/stardust/tech/index.html
|
[32] |
Tsou P. Stardust: a comet coma flyby sample return[C]. 2009 IEEE Aerospace conference, Big Sky, MT, USA, March 7-14, 2009
|
[33] |
Brownlee D E,Tsou P,Anderson J D,et al. Stardust: comet and interstellar dust sample return mission[J]. Journal of Geophysical Research,2003,108(E10):1−15
|
[34] |
Tsou P, Brownlee D E, Sandford S A, et al. Wild 2 and interstellar sample collection and earth return[J]. Journal of Geophysical Research. 108 (8113) (2003) 3-1–3-21
|
[35] |
Xu W B,Zhao H B. Deep space exploration of asteroids: the science perspectives[J]. Advances in Earth Science,2005,20(11):31−38 (徐伟彪,赵海斌. 小行星深空探测的科学意义和展望[J]. 地球科学进展,2005,20(11):31−38(in chinese)
Xu W B, Zhao H B. Deep Space Exploration of Asteroids: the Science Perspectives[J]. Advances in Earth Science, 2005,20(11):31-38
|
[36] |
赵忠贤, 小行星冲击碎岩器设计分析与实验研究[D]. 北华航天工业学院, 2020
Zhao Z X. Design, analysis, experiment and research of the asteriod impact rock crusher[D]. North China Institute of Aerospace Engineering, 2020
|
[37] |
Siddiqi A A. Beyond earth: a chronicle of deep space exploration, 1958-2016[M]. National Aeronautics and Space Administration, Office of Communications, NASA History Division, 2018
|
[38] |
Binzel R P,Rivkin A S,Bus S J,et al. MUSES-C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite[J]. Meteoritics & Planet Science,2001,36(8):1167−1172
|
[39] |
Miyamoto H,Yano H,Scheeres D J,et al. Regolith migration and sorting on asteroid Itokawa[J]. Science,2007,316(5827):1011−1014 doi: 10.1126/science.1134390
|
[40] |
Keller L P,Berger E L,et al. A transmission electron microscope study of Itokawa regolith grains[J]. Earth, Planets and Space,2014,66(1):89 doi: 10.1186/1880-5981-66-89
|
[41] |
Tomoki N,Takaaki N,Masahiko T,et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites[J]. Science,2011,333(6046):1113−1116 doi: 10.1126/science.1207758
|
[42] |
Yada T,Fujimura A,Abe M,et al. Hayabusa-returned sample curation in the planetary material sample curation facility of JAXA[J]. Meteoritics & Planetary Science,2014,49(2):135−153
|
[43] |
Sei-ichiro W,Yuichi T,Makoto Y,et al. Hayabusa2 mission overview[J]. Space Science Reviews,2017,208(1-4):3−16 doi: 10.1007/s11214-017-0377-1
|
[44] |
Saiki T,Imamura H,Arakawa M,et al. The small carry-on impactor (SCI) and the Hayabusa2 impact experiment[J]. Space Science Reviews,2017,208(1-4):165−186 doi: 10.1007/s11214-016-0297-5
|
[45] |
Sawada H,Okazaki R,Tachibana S,et al. Hayabusa2 sampler: collection of asteroidal surface material[J]. Space Science Reviews,2017,208(1-4):81−106 doi: 10.1007/s11214-017-0338-8
|
[46] |
Arakawa M,Wada K,Saiki T,et al. Scientific objectives of small carry-on impactor (SCI) and deployable camera 3 digital (DCAM3-D): observation of an ejecta curtain and a crater formed on the surface of Ryugu by an artificial high-velocity impact.[J]. Space Science Reviews,2017,208(1-4):187−212 doi: 10.1007/s11214-016-0290-z
|
[47] |
Okazaki R,Nagao K,Miura Y N,et al. Noble gases recovered from the Hayabusa sample container (abstract)[J]. Lunar Planet Sci,2011:1653
|
[48] |
Ryuji O,Hirotaka S,Shinji Y,et al. Hayabusa2 sample catcher and container: metal-seal system for vacuum encapsulation of returned samples with volatiles and organic compounds recovered from C-Type Asteroid Ryugu[J]. Space Science Reviews,2017,208(1-4):107−124 doi: 10.1007/s11214-016-0289-5
|
[49] |
Yada T, Abe M, Uesugi M, et al. A nature of particles in the Hayabusa sample catcher and contamination controls for Hayabusa 2 sample containers[C]. 77th Annual Meeting of the Meteoritical Society, 2014
|
[50] |
Yamada T, Yoshihara K, Yamada K, et al. Development of a Hayabusa-2 sample return capsule [C]. 30th ISTS, 2015
|
[51] |
Yamada T,Yoshikawa M,Abe M,et al. System design of the Hayabusa 2-asteroid sample return mission to 1999 JU3[J]. Acta Astronautica,2013,91:356−362 doi: 10.1016/j.actaastro.2013.06.028
|
[52] |
Sawada H, Okazaki R, Okamoto C, et al. The sampling system of Hayabusa2 missions (abstract) [C]. 63rd International Astronautical Congress 2012, 2012
|
[53] |
Clark B E,Binzel R P,Howell E S,et al. Asteroid (101955) 1999 RQ36: Spectroscopy from 0.4 to 2.4 μm and meteorite analogs[J]. Icarus,2011,216(2):462−475 doi: 10.1016/j.icarus.2011.08.021
|
[54] |
Hergenrother C W,Nolan M C,Binzel R P,et al. Lightcurve, color and phase function photometry of the OSIRIS-REx target asteroid (101955) Bennu[J]. Icarus,2013,226(1):663−670 doi: 10.1016/j.icarus.2013.05.044
|
[55] |
Delbo M,Harris A W,Mottola S,et al. Thermal inertia of near-earth asteroids and implications for the magnitude of the Yarkovsky effect[J]. Icarus,2007,190(1):236−249 doi: 10.1016/j.icarus.2007.03.007
|
[56] |
Emery J P,Fernandez Y R,Kelley M S,et al. Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu[J]. Icarus,2014,234(1):17−35
|
[57] |
Clark B C, Bierhaus E B, Harris J W, et al. TAGSAM: A gas-driven system for collecting samples from solar system bodies[C]. 2016 IEEE Aerospace Conference, Big Sky, MT, USA, March 5-12, 2016
|
[58] |
https://solarsystem.nasa.gov/missions/osiris-rex/in-depth/.
|
[59] |
Beshore E, Lauretta D, Boynton W, et al. The OSIRIS-REx asteroid sample return mission[R]. NASA goddard space flight center, 2015
|
[60] |
Bierhaus E B, Clark B C, Harris J W, et al. The OSIRIS-REx spacecraft and the touch-and-go sample acquisition mechanism (TAGSAM)[J]. Space Sci Rev 214 (2018) 107
|
[61] |
Ajluni T, Linn T, Willcockson W, et al. OSIRIS-REx returning the asteroid sample[C]. 2015 IEEE Aerospace CONFERENCE, Big Sky, MT, USA, March 7-14, 2015
|
[62] |
Nilsen E, Whetsel C, Mattingly R, et al. Mars sample return campaign status[C]. 2012 IEEE Aerospace Conference, Big Sky, MT, USA, Mar. 3-10, 2012
|
[63] |
O’Neil W, Cazaux C, et al. The mars sample return project[C]. 50th International Astronautical Congress, Amsterdam, USA, October4-8, 1999
|
[64] |
Monica M G. Exploring Mars with Returned Samples[J]. Space Sci Rev,2020,216(51):1−21
|
[65] |
Farley K A,Williford K H,Stack K M. Mars 2020 mission overview[J]. Space Sci Rev,2020,216(142):1−41
|
[66] |
Perino S, Cooper D, Rosing D, The evolution of an orbiting sample container for potential mars sample return[C]. 2017 IEEE Aerospace Conference, Big Sky, MT, USA, March 4-11, 2017
|
[67] |
Neal C. Issues involved in a martian sample return: integrity preservation and the curation and analysis planning team for Extraterrestrial materials (CAPTEM) position[J]. Journal of Geophysical Research, 2000, 105(E9), 22487-22506
|
[68] |
Mepac N. Science Priorities for Mars Sample Return[J]. Astrobiology, 2008, 8(3), 489-535
|
[69] |
Younse P, Thimal A, Backes P, et al. Sample sealing approaches for Mars Sample Return caching[C]. 2012 IEEE Aerospace Conference, Big Sky, MT, USA, March 3-10, 2012
|
[70] |
Bao X Q, Younse P, Bhandari P. FE simulation of SMA seal for mars sample return[C]. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013, San Diego, California, USA, April 19, 2013
|
[71] |
Kriechbaum K, Youns P e, Kulczycki E, Design of robust sealing mechanism for mars 2020 sample tubes[J]. Journal of Spacecraft and Rockets, 2020, 57(5): 964-974
|
[72] |
Gershman R, Bar-Cohen Y, Hendry M, et al. Break-the-chain technology for potential mars sample return[C]. 2018 IEEE Aerospace Conference, Big Sky, MT, USA, March 3-10, 2018
|
[73] |
Younse P, Strahle J W, Dolci M, el at. An orbiting sample capture and orientation system architecture for potential mars sample return[C]. 2018 IEEE Aerospace Conference, Big Sky, MT, USA, March 3-10, 2018
|
[74] |
Bar-Cohen Y, Rivellini T P, Wincentsen J E, el at. Separation and sealing of a sample container using brazing[R]. Jet Propulsion Laboratory, 2007
|
[75] |
Bar-Cohen Y, Wu J, Olorunsola A K. Simultaneous separation, seaming and sealing using brazing (S3B) for sample containerization and planetary protection[C]. Smart Structures and Materials 2005: Industrial and Commercial Applications of Smart Structures Technologies. International Society for Optics and Photonics, San Diego, California, USA, May 5, 2006
|
[76] |
Bar-Cohen Y, Badescu M, Sherrit S, el at. Synchronous separation, seaming, sealing and sterilization (S4) using brazing for sample containerization and planetary protection[C]. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, Denver, Colorado, USA, April 12 2018
|
[77] |
Bao X Q, Badescu M, Sherrit S. Heating and thermal control of brazing technique to break contamination path for potential Mars sample return[C]. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, Portland, Oregon, USA, April 10, 2017
|
[78] |
Cholakian T, Chung S, Kulczycki E. Bio-Barriers: preventing forward contamination and protecting planetary astrobiology instruments[C]. 2007 IEEE Aerospace Conference, Big Sky, MT, USA, March 3-10, 2007
|