[1] |
Kastner M A. Artificial atoms[J]. Physics Today,1993,46(1):24−31 doi: 10.1063/1.881393
|
[2] |
Ashoori R C. Electrons in artificial atoms[J]. Nature,1996,379(6564):413−419 doi: 10.1038/379413a0
|
[3] |
Eigler D M,Schweizer E K. Positioning single atoms with a scanning tunnelling microscope[J]. Nature,1990,344(6266):524−526 doi: 10.1038/344524a0
|
[4] |
Xu X Z,Zhang Z H,Dong J C,et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil[J]. Science Bulletin,2017,62(15):1074−1080 doi: 10.1016/j.scib.2017.07.005
|
[5] |
Liu C,Xu X Z,Qiu L,et al. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides[J]. Nature Chemistry,2019,11(8):730−736 doi: 10.1038/s41557-019-0290-1
|
[6] |
Zhang Z B,Qi J J,Zhao M Z,et al. Scrolled production of large-scale continuous graphene on copper foils[J]. Chinese Physics Letters,2020,37(10):108101 doi: 10.1088/0256-307X/37/10/108101
|
[7] |
Wang L,Xu X Z,Zhang L N,et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper[J]. Nature,2019,570(7759):91−95 doi: 10.1038/s41586-019-1226-z
|
[8] |
Li T T,Guo W,Ma L,et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire[J]. Nature Nanotechnology,2021,16(11):1201−1207 doi: 10.1038/s41565-021-00963-8
|
[9] |
Wang J H,Xu X Z,Cheng T,et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire[J]. Nature Nanotechnology,2022,17(1):33−38 doi: 10.1038/s41565-021-01004-0
|
[10] |
Choi S H,Kim H J,Song B,et al. Epitaxial single-crystal growth of transition metal dichalcogenide monolayers via the atomic sawtooth Au surface[J]. Advanced Materials,2021,33(15):2006601 doi: 10.1002/adma.202006601
|
[11] |
Wang Q Q,Li N,Tang J,et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes[J]. Nano Letters,2020,20(10):7193−7199 doi: 10.1021/acs.nanolett.0c02531
|
[12] |
Zhou J D,Zhu C,Zhou Y,et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides[J]. Nature Materials,2023,22(4):450−458 doi: 10.1038/s41563-022-01291-5
|
[13] |
Kol'tsov S I,Aleskovskii V B. Interaction of titanium tetrachloride with silica gel[J]. Zh Prikl Khim,1967,40:907
|
[14] |
Kol'tsov S I. Preparation and investigation of the products of interaction between titanium tetrachloride and silica gel[J]. Zh Prikl Khim,1969,42(5):1023−1028
|
[15] |
Suntola T, Antson J. Method for producing compound thin films: US 4058430A[P]. 1977
|
[16] |
Leskelä M,Ritala M. Atomic layer deposition chemistry: recent developments and future challenges[J]. Angewandte Chemie International Edition,2003,42(45):5548−5554 doi: 10.1002/anie.200301652
|
[17] |
Knisley T J,Kalutarage L C,Winter C H. Precursors and chemistry for the atomic layer deposition of metallic first row transition metal films[J]. Coordination Chemistry Reviews,2013,257(23-24):3222−3231 doi: 10.1016/j.ccr.2013.03.019
|
[18] |
Eigenfeld N T,Gray J M,Brown J J,et al. Ultra-thin 3D nano-devices from atomic layer deposition on polyimide[J]. Advanced Materials,2014,26(23):3962−3967 doi: 10.1002/adma.201400410
|
[19] |
Griffiths M B E,Pallister P J,Mandia D J,et al. Atomic layer deposition of gold metal[J]. Chemistry of Materials,2016,28(1):44−46 doi: 10.1021/acs.chemmater.5b04562
|
[20] |
Kerrigan M M,Klesko J P,Winter C H. Low temperature, selective atomic layer deposition of cobalt metal films using bis(1, 4-di-tert-butyl-1, 3-diazadienyl)cobalt and alkylamine precursors[J]. Chemistry of Materials,2017,29(17):7458−7466 doi: 10.1021/acs.chemmater.7b02456
|
[21] |
Ovanesyan R A,Filatova E A,Elliott S D,et al. Atomic layer deposition of silicon-based dielectrics for semiconductor manufacturing: current status and future outlook[J]. Journal of Vacuum Science & Technology,2019,37(6):060904
|
[22] |
Longo E,Mantovan R,Cecchini R,et al. ALD growth of ultra-thin Co layers on the topological insulator Sb2Te3[J]. Nano Research,2020,13(2):570−575 doi: 10.1007/s12274-020-2657-4
|
[23] |
Cao K,Cai J M,Chen R. Inherently selective atomic layer deposition and applications[J]. Chemistry of Materials,2020,32(6):2195−2207 doi: 10.1021/acs.chemmater.9b04647
|
[24] |
Chen R,Kim H,McIntyre P C,et al. Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification[J]. Applied Physics Letters,2005,86(19):191910 doi: 10.1063/1.1922076
|
[25] |
Wojtecki R,Mettry M,Fine Nathel N F,et al. Fifteen nanometer resolved patterns in selective area atomic layer deposition—defectivity reduction by monolayer design[J]. ACS Applied Materials & Interfaces,2018,10(44):38630−38637
|
[26] |
Dimiev A,Kosynkin D V,Sinitskii A,et al. Layer-by-layer removal of graphene for device patterning[J]. Science,2011,331(6021):1168−1172 doi: 10.1126/science.1199183
|
[27] |
Faraz T,Roozeboom F,Knoops H C M,et al. Atomic layer etching: what can we learn from atomic layer deposition?[J]. J. ECS Journal of Solid State Science and Technology,2015,4(6):N5023−N5032 doi: 10.1149/2.0051506jss
|
[28] |
Kim K S,Ji Y J,Nam Y,et al. Atomic layer etching of graphene through controlled ion beam for graphene-based electronics[J]. Scientific Reports,2017,7(1):2462 doi: 10.1038/s41598-017-02430-8
|
[29] |
Wang M,Fu L,Gan L,et al. CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography[J]. Scientific Reports,2013,3:1238 doi: 10.1038/srep01238
|
[30] |
Kane B E. A silicon-based nuclear spin quantum computer[J]. Nature,1998,393(6681):133−137 doi: 10.1038/30156
|
[31] |
Huang W,Yang C H,Chan K W,et al. Fidelity benchmarks for two-qubit gates in silicon[J]. Nature,2019,569(7757):532−536 doi: 10.1038/s41586-019-1197-0
|
[32] |
Philips S G J,Mądzik M T,Amitonov S V,et al. Universal control of a six-qubit quantum processor in silicon[J]. Nature,2022,609(7929):919−924 doi: 10.1038/s41586-022-05117-x
|
[33] |
Xue X,Russ M,Samkharadze N,et al. Quantum logic with spin qubits crossing the surface code threshold[J]. Nature,2022,601(7893):343−347 doi: 10.1038/s41586-021-04273-w
|
[34] |
Xie T Y,Zhao Z Y,Xu S Y,et al. 99.92%-Fidelity CNOT gates in solids by noise filtering[J]. Physical Review Letters,2023,130(3):030601 doi: 10.1103/PhysRevLett.130.030601
|
[35] |
Hänsch T W,Schawlow A L. Cooling of gases by laser radiation[J]. Optics Communications,1975,13(1):68−69 doi: 10.1016/0030-4018(75)90159-5
|
[36] |
Chu S,Hollberg L,Bjorkholm J E,et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters,1985,55(1):48−51 doi: 10.1103/PhysRevLett.55.48
|
[37] |
Chu S,Bjorkholm J E,Ashkin A,et al. Experimental observation of optically trapped atoms[J]. Physical Review Letters,1986,57(3):314−317 doi: 10.1103/PhysRevLett.57.314
|
[38] |
Raab E L,Prentiss M,Cable A,et al. Trapping of neutral sodium atoms with radiation pressure[J]. Physical Review Letters,1987,59(23):2631−2634 doi: 10.1103/PhysRevLett.59.2631
|
[39] |
Reichel J,Bardou F,Dahan M B,et al. Raman cooling of Cesium below 3 nK: New approach inspired by Lévy flight statistics[J]. Physical Review Letters,1995,75(25):4575−4578 doi: 10.1103/PhysRevLett.75.4575
|
[40] |
Browaeys A,Lahaye T. Many-body physics with individually controlled Rydberg atoms[J]. Nature Physics,2020,16(2):132−142 doi: 10.1038/s41567-019-0733-z
|
[41] |
Kaufman A M,Ni K K. Quantum science with optical tweezer arrays of ultracold atoms and molecules[J]. Nature Physics,2021,17(12):1324−1333 doi: 10.1038/s41567-021-01357-2
|
[42] |
Meng Z M,Wang L W,Han W,et al. Atomic Bose–Einstein condensate in twisted-bilayer optical lattices[J]. Nature,2023,615(7951):231−236 doi: 10.1038/s41586-023-05695-4
|
[43] |
Cho A Y,Arthur J R. Molecular beam epitaxy[J]. Progress in Solid State Chemistry,1975,10:157−191 doi: 10.1016/0079-6786(75)90005-9
|
[44] |
Chung Y J,Rosales K A V,Baldwin K W,et al. Ultra-high-quality two-dimensional electron systems[J]. Nature Materials,2021,20(5):632−637 doi: 10.1038/s41563-021-00942-3
|
[45] |
Feng B J,Ding Z J,Meng S,et al. Evidence of silicene in honeycomb structures of silicon on Ag(111)[J]. Nano Letters,2012,12(7):3507−3511 doi: 10.1021/nl301047g
|
[46] |
Meng L,Wang Y L,Zhang L Z,et al. Buckled silicene formation on Ir(111)[J]. Nano Letters,2013,13(2):685−690 doi: 10.1021/nl304347w
|
[47] |
Li L F,Lu S Z,Pan J B,et al. Buckled germanene formation on Pt(111)[J]. Advanced Materials,2014,26(28):4820−4824 doi: 10.1002/adma.201400909
|
[48] |
Zhu F F,Chen W J,Xu Y,et al. Epitaxial growth of two-dimensional stanene[J]. Nature Materials,2015,14(10):1020−1025 doi: 10.1038/nmat4384
|
[49] |
Deng J L,Xia B Y,Ma X C,et al. Epitaxial growth of ultraflat stanene with topological band inversion[J]. Nature Materials,2018,17(12):1081−1086 doi: 10.1038/s41563-018-0203-5
|
[50] |
Feng B J,Zhang J,Zhong Q,et al. Experimental realization of two-dimensional boron sheets[J]. Nature Chemistry,2016,8(6):564−568
|
[51] |
Li L F,Wang Y L,Xie S Y,et al. Two-dimensional transition metal honeycomb realized: Hf on Ir(111)[J]. Nano Letters,2013,13(10):4671−4674 doi: 10.1021/nl4019287
|
[52] |
Li L K,Yu Y J,Ye G J,et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology,2014,9(5):372−377 doi: 10.1038/nnano.2014.35
|
[53] |
Zhang J L,Zhao S T,Han C,et al. Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus[J]. Nano Letters,2016,16(8):4903−4908 doi: 10.1021/acs.nanolett.6b01459
|
[54] |
Wu X,Shao Y,Liu H,et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2[J]. Advanced Materials,2017,29(11):1605407 doi: 10.1002/adma.201605407
|
[55] |
Zhu S Y,Shao Y,Wang E,et al. Evidence of topological edge states in buckled antimonene monolayers[J]. Nano Letters,2019,19(9):6323−6329 doi: 10.1021/acs.nanolett.9b02444
|
[56] |
Li G,Zhang L,Wu X,et al. Stable Silicene in Graphene/Silicene Van der Waals Heterostructures[J]. Advanced Materials,2018,30(16):1804650
|
[57] |
Farwick zum Hagen F H,Zimmermann D M,Silva C C,et al. Structure and growth of hexagonal boron nitride on Ir(111)[J]. ACS Nano,2016,10(12):11012−11026 doi: 10.1021/acsnano.6b05819
|
[58] |
Garnica M,Schwarz M,Ducke J,et al. Comparative study of the interfaces of graphene and hexagonal boron nitride with silver[J]. Physical Review B,2016,94(15):155431 doi: 10.1103/PhysRevB.94.155431
|
[59] |
Schwarz M,Riss A,Garnica M,et al. Corrugation in the weakly interacting hexagonal-BN/Cu(111) system: structure determination by combining noncontact atomic force microscopy and x-ray standing waves[J]. ACS Nano,2017,11(9):9151−9161 doi: 10.1021/acsnano.7b04022
|
[60] |
Sørensen S G,Füchtbauer H G,Tuxen A K,et al. Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface[J]. ACS Nano,2014,8(7):6788−6796 doi: 10.1021/nn502812n
|
[61] |
Wang Y L,Li L F,Yao W,et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt[J]. Nano Letters,2015,15(6):4013−4018 doi: 10.1021/acs.nanolett.5b00964
|
[62] |
Liu Z L,Wu X,Shao Y,et al. Epitaxially grown monolayer VSe2: an air-stable magnetic two-dimensional material with low work function at edges[J]. Science Bulletin,2018,63(7):419−425 doi: 10.1016/j.scib.2018.03.008
|
[63] |
Liu Z L,Lei B,Zhu Z L,et al. Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis[J]. Nano Letters,2019,19(8):4897−4903 doi: 10.1021/acs.nanolett.9b00889
|
[64] |
Gao L,Sun J T,Lu J C,et al. Epitaxial growth of honeycomb monolayer CuSe with dirac nodal line fermions[J]. Advanced Materials,2018,30(16):1707055 doi: 10.1002/adma.201707055
|
[65] |
Dong L,Wang A W,Li E,et al. Formation of two-dimensional AgTe monolayer atomic crystal on Ag(111) substrate[J]. Chinese Physics Letters,2019,36(2):028102 doi: 10.1088/0256-307X/36/2/028102
|
[66] |
Liu B,Liu J,Miao G Y,et al. Flat AgTe honeycomb monolayer on Ag(111)[J]. The Journal of Physical Chemistry Letters,2019,10(8):1866−1871 doi: 10.1021/acs.jpclett.9b00339
|
[67] |
Lin X,Lu J C,Shao Y,et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters[J]. Nature Materials,2017,16(7):717−721 doi: 10.1038/nmat4915
|
[68] |
Lv H F,Chen C Y,Li W B,et al. Selective binding and periodic arrangement of magic boron clusters on monolayer borophene[J]. Proceedings of the National Academy of Sciences of the United States of America,2023,120(11):e2215131120 doi: 10.1073/pnas.2215131120
|
[69] |
Gou J,Bai H,Zhang X L,et al. Two-dimensional ferroelectricity in a single-element bismuth monolayer[J]. Nature,2023,617(7959):67−72 doi: 10.1038/s41586-023-05848-5
|
[70] |
Guo Q M,Qin Z H,Liu C D,et al. Bias dependence of apparent layer thickness and Moiré pattern on NaCl/Cu(001)[J]. Surface Science,2010,604(19-20):1820−1824 doi: 10.1016/j.susc.2010.07.013
|
[71] |
Beinik I,Barth C,Hanbücken M,et al. KCl ultra-thin films with polar and non-polar surfaces grown on Si(111)7 ×7[J]. Scientific Reports,2015,5:8223 doi: 10.1038/srep08223
|
[72] |
Quate C F. Switch to atom control[J]. Nature,1991,352(6336):571 doi: 10.1038/352571a0
|
[73] |
Crommie M F,Lutz C P,Eigler D M. Confinement of electrons to quantum corrals on a metal surface[J]. Science,1993,262(5131):218−220 doi: 10.1126/science.262.5131.218
|
[74] |
Gu Q J,Liu N,Zhao W B,et al. Regular artificial nanometer-scale structures fabricated with scanning tunneling microscope[J]. Applied Physics Letters,1995,66(14):1747−1749 doi: 10.1063/1.113354
|
[75] |
Crommie M F,Lutz C P,Eigler D M. Imaging standing waves in a two-dimensional electron gas[J]. Nature,1993,363(6429):524−527 doi: 10.1038/363524a0
|
[76] |
Gomes K K,Mar W,Ko W,et al. Designer Dirac fermions and topological phases in molecular graphene[J]. Nature,2012,483(7389):306−310 doi: 10.1038/nature10941
|
[77] |
Tamai A,Meevasana W,King P D C,et al. Spin-orbit splitting of the Shockley surface state on Cu(111)[J]. Physical Review B,2013,87(7):075113 doi: 10.1103/PhysRevB.87.075113
|
[78] |
Slot M R,Gardenier T S,Jacobse P H,et al. Experimental realization and characterization of an electronic Lieb lattice[J]. Nature Physics,2017,13(7):672−676 doi: 10.1038/nphys4105
|
[79] |
Collins L C,Witte T G,Silverman R,et al. Imaging quasiperiodic electronic states in a synthetic Penrose tiling[J]. Nature Communications,2017,8:15961 doi: 10.1038/ncomms15961
|
[80] |
Kempkes S N,Slot M R,Freeney S E,et al. Design and characterization of electrons in a fractal geometry[J]. Nature Physics,2019,15(2):127−131 doi: 10.1038/s41567-018-0328-0
|
[81] |
Kempkes S N,Slot M R,van den Broeke J J,et al. Robust zero-energy modes in an electronic higher-order topological insulator[J]. Nature Materials,2019,18(12):1292−1297 doi: 10.1038/s41563-019-0483-4
|
[82] |
Freeney S E,van den Broeke J J,Harsveld van der Veen A J J,et al. Edge-dependent topology in kekulé lattices[J]. Physical Review Letters,2020,124(23):236404 doi: 10.1103/PhysRevLett.124.236404
|
[83] |
Pan Y,Yang J S,Erwin S C,et al. Reconfigurable quantum-dot molecules created by atom manipulation[J]. Physical Review Letters,2015,115(7):076803 doi: 10.1103/PhysRevLett.115.076803
|
[84] |
Li Q L,Li X X,Miao B F,et al. Kondo-free mirages in elliptical quantum corrals[J]. Nature Communications,2020,11(1):1400 doi: 10.1038/s41467-020-15137-8
|
[85] |
Chen H,Zhang X L,Zhang Y Y,et al. Atomically precise, custom-design origami graphene nanostructures[J]. Science,2019,365(6457):1036−1040 doi: 10.1126/science.aax7864
|
[86] |
Yang K,Paul W,Phark S H,et al. Coherent spin manipulation of individual atoms on a surface[J]. Science,2019,366(6464):509−512 doi: 10.1126/science.aay6779
|
[87] |
Yang K,Phark S H,Bae Y,et al. Probing resonating valence bond states in artificial quantum magnets[J]. Nature Communications,2021,12(1):993 doi: 10.1038/s41467-021-21274-5
|
[88] |
Custance O,Perez R,Morita S. Atomic force microscopy as a tool for atom manipulation[J]. Nature Nanotechnology,2009,4(12):803−810 doi: 10.1038/nnano.2009.347
|
[89] |
Sugimoto Y,Pou P,Custance O,et al. Complex patterning by vertical interchange atom manipulation using atomic force microscopy[J]. Science,2008,322(5900):413−417 doi: 10.1126/science.1160601
|
[90] |
Pinilla-Cienfuegos E,Mañas-Valero S,Navarro-Moratalla E,et al. Local oxidation nanolithography on metallic transition metal dichalcogenides surfaces[J]. Applied Sciences,2016,6(9):250 doi: 10.3390/app6090250
|
[91] |
Hirjibehedin C F,Lutz C P,Heinrich A J. Spin coupling in engineered atomic structures[J]. Science,2006,312(5776):1021−1024 doi: 10.1126/science.1125398
|
[92] |
Khajetoorians A A,Wiebe J,Chilian B,et al. Atom-by-atom engineering and magnetometry of tailored nanomagnets[J]. Nature Physics,2012,8(6):497−503 doi: 10.1038/nphys2299
|
[93] |
Choi D J,Lorente N,Wiebe J,et al. Colloquium: atomic spin chains on surfaces[J]. Reviews of Modern Physics,2019,91(4):041001 doi: 10.1103/RevModPhys.91.041001
|
[94] |
Huff T,Labidi H,Rashidi M,et al. Binary atomic silicon logic[J]. Nature Electronics,2018,1(12):636−643 doi: 10.1038/s41928-018-0180-3
|
[95] |
Kalff F E,Rebergen M P,Fahrenfort E,et al. A kilobyte rewritable atomic memory[J]. Nature Nanotechnology,2016,11(11):926−929 doi: 10.1038/nnano.2016.131
|
[96] |
He Y,Gorman S K,Keith D,et al. A two-qubit gate between phosphorus donor electrons in silicon[J]. Nature,2019,571(7765):371−375 doi: 10.1038/s41586-019-1381-2
|
[97] |
Kiraly B,Knol E J,van Weerdenburg W M J,et al. An atomic Boltzmann machine capable of self-adaption[J]. Nature Nanotechnology,2021,16(4):414−420 doi: 10.1038/s41565-020-00838-4
|
[98] |
Liebhaber E,Rütten L M,Reecht G,et al. Quantum spins and hybridization in artificially-constructed chains of magnetic adatoms on a superconductor[J]. Nature Communications,2022,13(1):2160 doi: 10.1038/s41467-022-29879-0
|
[99] |
Rashidi M,Wolkow R A. Autonomous scanning probe microscopy in situ tip conditioning through machine learning[J]. ACS Nano,2018,12(6):5185−5189 doi: 10.1021/acsnano.8b02208
|
[100] |
Gordon O,D’Hondt P,Knijff L,et al. Scanning tunneling state recognition with multi-class neural network ensembles[J]. Review of Scientific Instruments,2019,90(10):103704 doi: 10.1063/1.5099590
|