[1] Sanders D M,Anders A. Review of cathodic arc deposition technology at the start of the new millennium[J]. Surface & Coatings Technology,2000,133:78−90
[2] Wang Fuzhen. Advances in cathode arc ion plating technology[J]. Vacuum and Cryogenics,2020,26(2):9 (王福贞. 阴极电弧离子镀膜技术的进步[J]. 真空与低温,2020,26(2):9(in chinese) doi: 10.3969/j.issn.1006-7086.2020.02.001 WANG Fuzhen. Advances in cathode arc ion plating technology[J]. Vacuum and Cryogenics, 2020, 26(2): 9 (in Chinese) doi: 10.3969/j.issn.1006-7086.2020.02.001
[3] COX B. Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys[J]. Journal of nuclear materials,2005,336(2-3):331−368 doi: 10.1016/j.jnucmat.2004.09.029
[4] 董雁国. 高温高压下金属锆结构变化及性能研究[D]. 秦皇岛: 燕山大学, 2010 DONG Yanguo. The structural changes and properties of metallic Zirconium treated under the high temperature and pressure[D]. Qinghuangdao: Yanshan University, 2010
[5] Benvenuti C,Santana A E,Ruzinov V. Ultimate pressures achieved in TiZrV sputter-coated vacuum chambers[J]. Vacuum,2001,60(1-2):279−284 doi: 10.1016/S0042-207X(00)00389-4
[6] Benvenuti C,Chiggiato P,Cicoira F,et al. Nonevaporable getter films for ultrahigh vacuum applications[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1998,16(1):148−154
[7] Selwyn G S,Singh J,Bennett R S. In-situ laser diagnostic studies of plasma-generated particulate contamination[J]. Journal of Vacuum Science & Technology A,1989,7(4):2758−2765
[8] Melzer A,Trottenberg T,Piel A. Experimental determination of the charge on dust particles forming Coulomb lattices[J]. Physics Letters A,1994,191(3-4):301−308 doi: 10.1016/0375-9601(94)90144-9
[9] Huang M,Lin G,Zhao Y,et al. Macro-particle reduction mechanism in biased arc ion plating of TiN[J]. Surface and Coatings Technology,2003,176(1):109−114 doi: 10.1016/S0257-8972(03)00017-3
[10] Li Peng,Huang Meidong,Tong Lina,et al. Comparison of TiN films prepared by magnetron sputtering and arc ion plating[J]. Journal of Tianjin Normal University (Natural Science Edition),2011,31(2):6 (李鹏,黄美东,佟莉娜,等. 磁控溅射与电弧离子镀制备TiN薄膜的比较[J]. 天津师范大学学报:自然科学版,2011,31(2):6(in chinese) LI Peng, HUANG Meidong, TONG Lina, et al. Comparison of TiN films prepared by magnetron sputtering and arc ion plating[J]. Journal of Tianjin Normal University (Natural Science Edition), 2011, 31(2): 6 (in Chinese)
[11] Zhao Yanhui,Shi Wenbo,Liu Zhonghai,et al. Progress on effects of deposition processing parameters on coatings deposition rate for arc ion plating[J]. Vacuum and Cryogenics,2020,26(5):7 (赵彦辉,史文博,刘忠海,等. 沉积工艺参数对电弧离子镀薄膜沉积速率影响的研究进展[J]. 真空与低温,2020,26(5):7(in chinese) doi: 10.3969/j.issn.1006-7086.2020.05.005 ZHAO Yanhui, SHI Wenbo, LIU Zhonghai, et al. Progress on effects of deposition processing parameters on coatings deposition rate for arc ion plating[J]. Vacuum and Cryogenics, 2020, 26(5): 7 (in Chinese) doi: 10.3969/j.issn.1006-7086.2020.05.005
[12] Zhengyang L,Wubiao Z,Yong Z,et al. Effects of superimposed pulse bias on TiN coating in cathodic arc deposition[J]. Surface and Coatings Technology,2000,131(1-3):158−161 doi: 10.1016/S0257-8972(00)00754-4
[13] Li M,Wang F. Effects of nitrogen partial pressure and pulse bias voltage on (Ti, Al) N coatings by arc ion plating[J]. Surface and Coatings Technology,2003,167(2-3):197−202 doi: 10.1016/S0257-8972(02)00895-2
[14] Liang Jianhua,Peng Shuming,Zhang Xiaohong,et al. Structure analysis of Zirconium films prepared by electron beam heating evaporation and resistance heating evaporation[J]. Atomic Energy Science and Technology,2012,46(8):4 (梁建华,彭述明,张晓红,等. 电子束加热与电阻加热蒸发锆膜的结构分析[J]. 原子能科学技术,2012,46(8):4(in chinese) LIANG Jianhua, PENG Shuming, ZHANG Xiaohong, et al. Structure analysis of Zirconium films prepared by electron beam heating evaporation and resistance heating evaporation[J]. Atomic Energy Science and Technology, 2012, 46(8): 4 (in Chinese)
[15] Hajihoseini H,Kateb M,Ingvarsson S,et al. Effect of substrate bias on properties of HiPIMS deposited vanadium nitride films[J]. Thin Solid Films,2018,663(OCT.1):126−130
[16] Gangopadhyay S,Acharya R,Chattopadhyay A K,et al. Effect of substrate bias voltage on structural and mechanical properties of pulsed DC magnetron sputtered TiN–MoSx composite coatings[J]. Vacuum,2010,84(6):843−850 doi: 10.1016/j.vacuum.2009.11.010
[17] Guo Chaoqian,Lin Songsheng,Shi Qian,et al. Effects of negative substrate bias voltage and duty ratio on macroparticles and thickness of CrN film deposited by arc ion plating[J]. Electropating and Finishing,2019,38(13):6 (郭朝乾,林松盛,石倩,等. 基体负偏压及占空比对电弧离子镀CrN薄膜表面大颗粒和厚度的影响[J]. 电镀与涂饰,2019,38(13):6(in chinese) doi: 10.19289/j.1004-227x.2019.13.007 GUO Chaoqian, LIN Songsheng, SHI Qian, et al. Effects of negative substrate bias voltage and duty ratio on macroparticles and thickness of CrN film deposited by arc ion plating[J]. Electropating and Finishing, 2019, 38(13): 6 (in Chinese) doi: 10.19289/j.1004-227x.2019.13.007
[18] Strohmeier B R. An ESCA method for determining the oxide thickness on aluminum alloys[J]. Surface & Interface Analysis,1990,15(1):51−56
[19] Petrovykh D Y,Sullivan J M,Whitman L J. Quantification of discrete oxide and sulfur layers on sulfur‐passivated InAs by XPS[J]. Surface & Interface Analysis,2005,37(11):989−997
[20] Liu Shuang,Ning Yonggong,Zhang Yi,et al. Study on a method of the thickness measurement of ultra-thin PtSi film[J]. Acta physica sinica,2001,50(8):4 (刘爽,宁永功,张毅,等. PtSi超薄膜厚度的一种检测方法研究[J]. 物理学报,2001,50(8):4(in chinese) doi: 10.7498/aps.50.1447 LIU Shuang, NING Yonggong, ZHANG Yi, et al. Study on a method of the thickness measurement of ultra-thin PtSi film[J]. Acta physica sinica, 2001, 50(8): 4 (in Chinese) doi: 10.7498/aps.50.1447
[21] Liu Fen,Qiu Limei,Zhao Liangzhong,et al. Accurate measurements of the oxide thickness for ultra-thin SiO2 on Si by using XPS[J]. Chemistry,2006,069(005):393−398 (刘芬,邱丽美,赵良仲,等. 用XPS法精确测量硅片上超薄氧化硅的厚度[J]. 化学通报,2006,069(005):393−398(in chinese) doi: 10.14159/j.cnki.0441-3776.2006.05.015 LIU Fen, QIU Limei, ZHAO Liangzhong, et al. Accurate measurements of the oxide thickness for ultra-thin SiO2 on Si by using XPS[J]. Chemistry, 2006, 069(005): 393-398 (in Chinese) doi: 10.14159/j.cnki.0441-3776.2006.05.015
[22] He Y,Shen T,Wang Q,et al. Effect of atmospheric exposure on secondary electron yield of inert metal and its potential impact on the threshold of multipactor effect[J]. Applied Surface Science,2020,520:146320 doi: 10.1016/j.apsusc.2020.146320
[23] Nistor V,González L A,Aguilera L,et al. Multipactor suppression by micro-structured gold/silver coatings for space applications[J]. Applied surface science,2014,315:445−453 doi: 10.1016/j.apsusc.2014.05.049
[24] Tanuma S,Powell C J,Penn D R. Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50–2000 eV range[J]. Surface and interface analysis,1991,17(13):911−926 doi: 10.1002/sia.740171304