[1] Liu J, Yan J F, Deng Z S. Nano-cryosurgery: a basic way to enhance freezing treatment of Tumor[C]. Proceedings of the ASME 2007 International Mechanical Engineering Congress and Exposition, 2007, 2: 87-94
[2] Anger J T,Gilbert B R,Goldstein M. Cryopreservation of Sperm: Indications, Methods and Results[J]. The Journal of Urology,2003,170(4):1079−1084
[3] Asghar W,El Assal R,Shafiee H,et al. Preserving human cells for regenerative, reproductive, and transfusion medicine[J]. Biotechnology Journal,2014,9(7):895−903 doi: 10.1002/biot.201300074
[4] Chen G,Lv Y. Nanotechnology-based cryopreservation of cell-scaffold constructs: a new breakthrough to clinical application[J]. Cryo Letters,2016,37(6):381−387
[5] 刘静. 低温生物医学工程学原理[M]. 北京, 科学出版社, 2006, 1−2. Liu J. Principles of cryogenic biomedical engineering[M]. Beijing: Science Press, 2006, 1−2
[6] Yu T H,Liu J,Zhou Y X. Selective freezing of target biological tissues after injection of solutions with specific thermal properties[J]. Cryobiology,2005,50(2):174−182 doi: 10.1016/j.cryobiol.2005.01.001
[7] Yu T H,Liu J,Zhou Y X. Selective freezing of target biological tissues after injection of solutions with specific thermal properties[J]. Cryobiology,2009,9(8):4521−4542
[8] Hou Y,Sun Z,Rao W,et al. Nanoparticle-mediated cryosurgery for tumor therapy[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2017,14(2):493−506
[9] Dou M,Lu C,Rao W. Bioinspired materials and technology for advanced cryopreservation[J]. Trends in Biotechnology,2021,40(1):93−106
[10] de Vries R J,Yarmush M,Uygun K. Systems engineering the organ preservation process for transplantation[J]. Current Opinion in Biotechnology,2019,58:192−201 doi: 10.1016/j.copbio.2019.05.015
[11] Rubinsky B,Perez P A,Carlson M E. The thermodynamic principles of isochoric cryopreservation[J]. Cryobiology,2005,50(2):121−138 doi: 10.1016/j.cryobiol.2004.12.002
[12] Taylor M J,Weegman B P,Baicu S C,et al. New approaches to cryopreservation of cells, tissues, and organs[J]. Transfusion Medicine and Hemotherapy, Karger Publishers,2019,46(3):197−215 doi: 10.1159/000499453
[13] Mi P,Cabral H,Kataoka K. Ligand-installed nanocarriers toward precision therapy[J]. Advanced Materials (Deerfield Beach, Fla. ),2020,32(13):e1902604 doi: 10.1002/adma.201902604
[14] Hou Y,Lu C,Dou M,et al. Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation[J]. Acta Biomaterialia,2020,102:403−415 doi: 10.1016/j.actbio.2019.11.023
[15] Rao W,Huang H,Wang H,et al. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant[J]. ACS Applied Materials & Interfaces,2015,7(8):5017−5028
[16] Lovelock J E. The haemolysis of human red blood-cells by freezing and thawing[J]. Biochimica Et Biophysica Acta,1953,10(3):414−426
[17] Mazur P. Cryobiology: the freezing of biological systems[J]. Science,1970,168(3934):939−949 doi: 10.1126/science.168.3934.939
[18] Bourne M H,Piepkorn M W,Clayton F,et al. Analysis of microvascular changes in frostbite injury[J]. Journal of Surgical Research,1986,40(1):26−35 doi: 10.1016/0022-4804(86)90141-1
[19] Hoffmann N E,Bischof J C. The cryobiology of cryosurgical injury[J]. Urology,2002,60(2, Supplement 1):40−49
[20] Fletcher N H. Nucleation by crystalline particles[J]. The Journal of Chemical Physics,1963,38(1):237−240 doi: 10.1063/1.1733468
[21] Zhang Z S,Liu X Y. Control of ice nucleation: freezing and antifreeze strategies[J]. Chemical Society Reviews,2018,47(18):7116−7139 doi: 10.1039/C8CS00626A
[22] 李方方. 生物材料纳米冷冻过程的理论与实验研究[D]. 中国科学院理化技术研究所, 2010. Li F F. Theoretical and experimental study on nano-freezing process of biological materials[D]. Technical Institute of Physics and Chemistry, CAS, Beijing, 2010,128
[23] Raymond J A,DeVries A L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes[J]. Proceedings of the National Academy of Sciences of the United States of America,1977,74(6):2589−2593 doi: 10.1073/pnas.74.6.2589
[24] Gage A A,Baust J. Mechanisms of tissue injury in cryosurgery[J]. Cryobiology,1998,37(3):171−186 doi: 10.1006/cryo.1998.2115
[25] 闫井夫. 肿瘤高效冷热治疗机理的研究[D]. 中国科学院理化技术研究所, 2008. Yan J F. Study on mechanisms for a highly efficient freezing/heating physical treatment of tumor[D]. Technical Institute of Physics and Chemistry, CAS, Beijing, 2008, 173
[26] Liu J,Zhou Y,Yu T,et al. Minimally invasive probe system capable of performing both cryosurgery and hyperthermia treatment on target tumor in deep tissues[J]. Minimally Invasive Therapy & Allied Technologies,2004,13(1):47−57
[27] Davies P L. Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth[J]. Trends in Biochemical Sciences,2014,39(11):548−555 doi: 10.1016/j.tibs.2014.09.005
[28] He Z Z, Di D R, Liu J. Enhancement of cryosurgery using biodegradable mgo nanoparticles[C]. ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer, 2013: 951–954
[29] Zachariassen K E,Hammel H T. Nucleating agents in the haemolymph of insects tolerant to freezing[J]. Nature,1976,262(5566):285−287 doi: 10.1038/262285a0
[30] Vonnegut B. The nucleation of ice formation by silver iodide[J]. Journal of Applied Physics,1947,18(7):593−595
[31] Lindow S E. The role of bacterial ice nucleation in frost injury to plants[J]. Annual Review of Phytopathology,1983,21(1):363−384 doi: 10.1146/annurev.py.21.090183.002051
[32] Hou Y,Sun X,Dou M,et al. Cellulose nanocrystals facilitate needle-like ice crystal growth and modulate molecular targeted ice crystal nucleation[J]. Nano Letters,2021,21(11):4868−4877 doi: 10.1021/acs.nanolett.1c00514
[33] Proimos B S. Beam-shapers oriented by gravity in rotational therapy[J]. Radiology,1966,87(5):928−932 doi: 10.1148/87.5.928
[34] Takahashi S. Conformation Radiotherapy. Rotation techniques as applied to radiography and radiotherapy of cancer[J]. Acta Radiologica: Diagnosis, 1965: Suppl 242: 1+
[35] Wright K A,Proimos B S,Trump J G,et al. Field shaping and selective protection in megavolt radiation therapy[J]. Radiology,1959,72(1):101−101 doi: 10.1148/72.1.101
[36] Rabin Y,Stahovich T F. Cryoheater as a means of cryosurgery control[J]. Physics in Medicine and Biology,2003,48:619−632 doi: 10.1088/0031-9155/48/5/305
[37] Baissalov R,Sandison G A,Reynolds D,et al. Simultaneous optimization of cryoprobe placement and thermal protocol for cryosurgery[J]. Physics in Medicine and Biology,2001,46(7):1799−1814 doi: 10.1088/0031-9155/46/7/305
[38] 狄德瑞. 可生物降解纳米颗粒的强化冷冻机理研究[D]. 中国科学院理化技术研究所, 2012. Di D R. Study on the freezing enhancement mechanisms of biodegradable nanoparticles[D]. Technical Institute of Physics and Chemistry, CAS, Beijing, 2012, 125
[39] Lv Y,Zou Y,Yang L. Feasibility study for thermal protection by microencapsulated phase change Micro/Nanoparticles during Cryosurgery[J]. Chemical Engineering Science,2011,66(17):3941−3953 doi: 10.1016/j.ces.2011.05.031
[40] Lv Y,Zou Y,Yang L. Uncertainty and sensitivity analysis of properties of phase change micro/nanoparticles for thermal protection during cryosurgery[J]. Forschung im Ingenieurwesen,2012,76(1–2):41−50
[41] Seifert J K,Morris D L. Indicators of recurrence following cryotherapy for hepatic metastases from colorectal cancer[J]. British Journal of Surgery,1999,86(2):234−240
[42] Crezee J,Lagendijk J J. Temperature uniformity during hyperthermia: the impact of large vessels[J]. Physics in Medicine and Biology,1992,37(6):1321−1337 doi: 10.1088/0031-9155/37/6/009
[43] Deng Z S,Liu J,Wang H-W. Disclosure of the significant thermal effects of large blood vessels during cryosurgery through infrared temperature mapping[J]. International Journal of Thermal Sciences,2008,47(5):530−545 doi: 10.1016/j.ijthermalsci.2007.05.007
[44] Deng Z S, Liu J, Yan J F, et al. Experimental and numerical investigation on simulating nanocryosurgery of target tissues embedded with large blood vessels[M]. Advances in Numerical Heat Transfer, 2009, 3
[45] 孙子乔. 低温冷冻治疗中纳米材料强化传热方法研究[D]. 中国科学院理化技术研究所, 2012 Sun Z Q. Study on the nano materials freezing enhancement effects of cryosurgery[D]. Technical Institute of Physics and Chemistry, CAS, Beijing, 2012, 175
[46] Liu J,Deng Z S. Nano-cryosurgery: advances and challenges[J]. Journal of Nanoscience and Nanotechnology,2009,9(8):4521−4542 doi: 10.1166/jnn.2009.1264
[47] Rao W,Bellotti A,Littrup P J,et al. Nanoparticle-encapsulated doxorubicin enhances cryoablation of cancer stem-like cells[J]. Technology,2014,2(1):28−35 doi: 10.1142/S2339547814500022
[48] Wang H,Agarwal P,Liang Y,et al. Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform[J]. Biomaterials,2018,180:265−278 doi: 10.1016/j.biomaterials.2018.07.021
[49] Hou Y,Sun X,Yao S,et al. Cryoablation-activated enhanced nanodoxorubicin release for the therapy of chemoresistant mammary cancer stem-like cells[J]. Journal of Materials Chemistry B,2020,8(5):908−918 doi: 10.1039/C9TB01922G
[50] Oldenburg A,Toublan F,Suslick K,et al. Magnetomotive contrast for in vivo optical coherence tomography[J]. Optics Express,2005,13(17):6597−6614 doi: 10.1364/OPEX.13.006597
[51] He Z,Liu P,Zhang S,et al. A freezing-induced turn-on imaging modality for real-time monitoring of cancer cells in cryosurgery[J]. Angewandte Chemie International Edition,2019,58(12):3834−3837 doi: 10.1002/anie.201813239
[52] Smith B R,Gambhir S S. Nanomaterials for In vivo imaging[J]. Chemical Reviews,2017,117(3):901−986 doi: 10.1021/acs.chemrev.6b00073
[53] Manuchehrabadi N,Gao Z,Zhang J,et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles[J]. Science Translational Medicine,2017,9(379):eaah4586 doi: 10.1126/scitranslmed.aah4586
[54] Huang H,He X,Yarmush M L. Advanced technologies for the preservation of mammalian biospecimens[J]. Nature Biomedical Engineering,2021,5(8):793−804 doi: 10.1038/s41551-021-00784-z
[55] Polge C,Smith A U,Parkes A S. Revival of spermatozoa after vitrification and dehydration at low temperatures[J]. Nature,1949,164(4172):666−666 doi: 10.1038/164666a0
[56] Lovelock J E,Bishop M W H. Prevention of freezing damage to living cells by dimethyl sulphoxide[J]. Nature, Nature Publishing Group,1959,183(4672):1394−1395
[57] Wolkers W F,Tablin F,Crowe J H. From anhydrobiosis to freeze-drying of eukaryotic cells[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2002,131(3):535−543
[58] Eroglu A,Toner M,Toth T L. Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes[J]. Fertility and Sterility,2002,77(1):152−158 doi: 10.1016/S0015-0282(01)02959-4
[59] Centner C S,Murphy E M,Priddy M C,et al. Ultrasound-induced molecular delivery to erythrocytes using a microfluidic system[J]. Biomicrofluidics,2020,14(2):024114 doi: 10.1063/1.5144617
[60] Shirakashi R,Köstner C M,Müller K J,et al. Intracellular delivery of trehalose into mammalian cells by electropermeabilization[J]. The Journal of Membrane Biology,2002,189(1):45−54 doi: 10.1007/s00232-002-1003-y
[61] Zhang Y,Wang H,Stewart S,et al. Cold-responsive nanoparticle enables intracellular delivery and rapid release of trehalose for organic-solvent-free cryopreservation[J]. Nano Letters,2019,19(12):9051−9061 doi: 10.1021/acs.nanolett.9b04109
[62] Cheng Y,Yu Y,Zhang Y,et al. Cold-responsive nanocapsules enable the sole-cryoprotectant-trehalose cryopreservation of β cell–laden hydrogels for diabetes treatment[J]. Small,2019,15(50):1904290 doi: 10.1002/smll.201904290
[63] 姚思远. 纳米海藻糖在人诱导多能干细胞冷冻保存中的传热传质特性研究[D]. 中国科学院理化技术研究所, 2021. Yao S Y. Study on heat and mass transfer characteristics of nano trehalose in cryopreservation of human pluripotent stem cells[D]. Technical Institute of Physics and Chemistry, CAS, Beijing, 2021, 79
[64] He Z,Liu K,Wang J. Bioinspired materials for controlling ice nucleation, growth, and recrystallization[J]. Accounts of Chemical Research,2018,51(5):1082−1091 doi: 10.1021/acs.accounts.7b00528
[65] Bai G,Song Z,Geng H,et al. Oxidized quasi-carbon nitride quantum dots inhibit ice growth[J]. Advanced Materials,2017,29(28):1606843 doi: 10.1002/adma.201606843
[66] Geng H,Liu X,Shi G,et al. Graphene oxide restricts growth and recrystallization of ice crystals[J]. Angewandte Chemie International Edition,2017,56(4):997−1001 doi: 10.1002/anie.201609230
[67] Zhu W,Guo J,Agola J O,et al. Metal–organic framework nanoparticle-assisted cryopreservation of red blood cells[J]. Journal of the American Chemical Society,2019,141(19):7789−7796 doi: 10.1021/jacs.9b00992
[68] Cao Y,Chang T,Fang C,et al. Inhibition effect of Ti3C2Tx MXene on ice crystals combined with laser-mediated heating facilitates high-performance cryopreservation[J]. ACS Nano,2022,16(6):8837−8850 doi: 10.1021/acsnano.1c10221
[69] Pegg D E,Green C J,Walter C A. Attempted Canine renal cryopreservation using dimethyl sulphoxide helium perfusion and microwave thawing[J]. Cryobiology,1978,15(6):618−626 doi: 10.1016/0011-2240(78)90086-X
[70] Jin B,Mazur P. High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an Ir laser pulse[J]. Scientific Reports,2015,5:9271 doi: 10.1038/srep09271
[71] Otero L,Rodríguez A C,Pérez-Mateos M,et al. Effects of magnetic fields on freezing: application to biological products[J]. Comprehensive Reviews in Food Science and Food Safety,2016,15(3):646−667 doi: 10.1111/1541-4337.12202
[72] Chemat F,Zill-e-Huma null,Khan M K. Applications of ultrasound in food technology: processing, preservation and extraction[J]. Ultrasonics Sonochemistry,2011,18(4):813−835 doi: 10.1016/j.ultsonch.2010.11.023
[73] Etheridge M L,Xu Y,Rott L,et al. Rf Heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials[J]. Technology,2014,02(3):229−242 doi: 10.1142/S2339547814500204
[74] Wang J,Zhao G,Zhang Z,et al. Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hucm-mscs cryopreserved by vitrification[J]. Acta Biomaterialia,2016,33:264−274 doi: 10.1016/j.actbio.2016.01.026
[75] Zhang X,Zhao G,Cao Y,et al. Magnetothermal heating facilitates the cryogenic recovery of stem cell–laden Alginate–Fe3O4 nanocomposite hydrogels[J]. Biomaterials Science, The Royal Society of Chemistry,2018,6(12):3139−3151 doi: 10.1039/C8BM01004H
[76] Gao Z,Ring H L,Sharma A,et al. Preparation of scalable silica‐coated iron oxide nanoparticles for nanowarming[J]. Advanced Science,2020,7(4):1901624 doi: 10.1002/advs.201901624
[77] Liu X,Zhao G,Chen Z,et al. Dual suppression effect of magnetic induction heating and microencapsulation on ice crystallization enables low-cryoprotectant vitrification of stem cell–alginate hydrogel constructs[J]. ACS Applied Materials & Interfaces,2018,10(19):16822−16835
[78] Brockbank K G M,Chen Z,Greene E D,et al. Vitrification of heart valve tissues[J]. Methods in Molecular Biology (Clifton, N. J. ),2015,1257:399−421
[79] Sharma A,Rao J S,Han Z,et al. Vitrification and nanowarming of kidneys[J]. Advanced Science,2021,8(19):2101691 doi: 10.1002/advs.202101691
[80] Zhan T,Liu K,Yang J,et al. Fe3O4 nanoparticles with carboxylic acid functionality for improving the structural integrity of whole vitrified rat kidneys[J]. ACS Applied Nano Materials,2021,4(12):13552−13561 doi: 10.1021/acsanm.1c03014
[81] Zhen X,Cheng P,Pu K. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy[J]. Small (Weinheim an Der Bergstrasse, Germany),2019,15(1):e1804105 doi: 10.1002/smll.201804105
[82] Nam J,Son S,Ochyl L J,et al. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer[J]. Nature Communications,2018,9(1):1074 doi: 10.1038/s41467-018-03473-9
[83] Khosla K, Zhan L, Bhati A, et al. Characterization of laser gold nanowarming: a platform for millimeter-scale cryopreservation[J]. Langmuir, 2018, 35
[84] Khosla K,Wang Y,Hagedorn M,et al. Gold nanorod induced warming of embryos from the cryogenic state enhances viability[J]. ACS Nano,2017,11(8):7869−7878 doi: 10.1021/acsnano.7b02216
[85] Knavel E M,Brace C L. Tumor ablation: common modalities and general practices[J]. Techniques in Vascular and Interventional Radiology,2013,16(4):192−200 doi: 10.1053/j.tvir.2013.08.002
[86] Chatterjee D K,Diagaradjane P,Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy[J]. Therapeutic Delivery, Future Science,2011,2(8):1001−1014 doi: 10.4155/tde.11.72
[87] Panhwar F,Chen Z,Hossain S M C,et al. Near-infrared laser mediated modulation of ice crystallization by two-dimensional nanosheets enables high-survival recovery of biological cells from cryogenic temperatures[J]. Nanoscale,2018,10(25):11760−11774 doi: 10.1039/C8NR01349G
[88] Yuan F,Zhao G,Panhwar F. Enhanced killing of HepG2 during cryosurgery with Fe3O4-nanoparticle improved intracellular ice formation and cell dehydration[J]. Oncotarget,2017,8(54):92561−92577 doi: 10.18632/oncotarget.21499
[89] Liu J. Nano cryosurgical therapy: new frontier in nano medicine[J]. Science & Technology Review,2007(15):67−74 (刘静. 纳米冷冻治疗学——纳米医学的新前沿[J]. 科技导报,2007(15):67−74(in chinese) doi: 10.3321/j.issn:1000-7857.2007.15.015 Liu J. Nano cryosurgical therapy: new frontier in nano medicine[J]. Science & Technology Review, 2007, 25(15): 67-74 doi: 10.3321/j.issn:1000-7857.2007.15.015