[1] |
Li F,Zhu Y,Li L H,et al. Review on magnetron sputtering technology and its development[J]. Vacuum Electronics,2011(3):49−54 (李芬,朱颖,李刘合,等. 磁控溅射技术及其发展[J]. 真空电子技术,2011(3):49−54(in chinese) doi: 10.3969/j.issn.1002-8935.2011.03.012
Li F, Zhu Y, Li L H, et al. Review on magnetron sputtering technology and its development[J].Vacuum Electronics,2011,(03):49-54 doi: 10.3969/j.issn.1002-8935.2011.03.012
|
[2] |
Dong Q,Fan Y D. Unbalanced magnetron sputtering and its application[J]. Chinese Journal of Vacuum Science and Technology,1996(1):51−57 (董骐,范毓殿. 非平衡磁控溅射及其应用[J]. 真空科学与技术学报,1996(1):51−57(in chinese)
Dong Q, Fan Y D. Unbalanced magnetron sputtering and its application[J]. Chinese Journal of Vacuum Science and Technology,1996,(01):51-57
|
[3] |
Yang W M,Liu Y W,Xu L X,et al. Review of film growth by sputtering technology[J]. Chinese Journal of Vacuum Science and Technology,2005(3):204−210 (杨文茂,刘艳文,徐禄祥,等. 溅射沉积技术的发展及其现状[J]. 真空科学与技术学报,2005(3):204−210(in chinese) doi: 10.3969/j.issn.1672-7126.2005.03.012
Yang W M, Liu Y W, Xu L X, et al. Review of film growth by sputtering technology[J]. Chinese Journal of Vacuum Science and Technology,2005,(03):204-210 doi: 10.3969/j.issn.1672-7126.2005.03.012
|
[4] |
李卓凡. 脉冲滑动放电周期特性及等离子体阻抗特性研究[D]. 河南: 郑州大学, 2019
Li Z F. Study on periodic characteristics and plasma impedance characteristics of pulsed sliding discharge[D]. Zhengzhou University, 2019
|
[5] |
赵璐璐. 低气压射频容性放电中二次电子和气体压强对等离子体特性影响的数值研究[D]. 大连: 大连理工大学, 2018
Zhao L L. Numerical study on the influence of secondary electron and gas pressure on plasma characteristics in RF capacitive discharges at low pressure [D]. Dalian University of Technology, 2018
|
[6] |
Huang J J,Liu Z Z,Liang R Q,et al. Experimental study of electrical characteristics of CCRF discharge[J]. Chinese Journal of Vacuum Science and Technology,2002(6):14−17 (黄建军,刘正之,梁荣庆,等. 容性耦合射频(CCRF)放电等离子体特性实验研究[J]. 真空科学与技术学报,2002(6):14−17(in chinese)
Huang J J, Liu Z Z, Liang R Q, et al. Experimental study of electrical characteristics of CCRF discharge[J]. Chinese Journal of Vacuum Science and Technology,2002,(06):14-17
|
[7] |
Wu Q B,Luo R C,Wang X Y,et al. Impedance of RF capacitive coupled plasma: a simulation and analytical study[J]. Chinese Journal of Vacuum Science and Technology,2020,40(5):458−464 (吴勤斌,罗日成,王学禹,等. 射频容性耦合等离子体阻抗影响因素研究[J]. 真空科学与技术学报,2020,40(5):458−464(in chinese) doi: 10.13922/j.cnki.cjovst.2020.05.12
Wu Q B, Luo R C, Wang X Y, et al. Impedance of RF capacitive coupled plasma: a simulation and analytical study[J].Chinese Journal of Vacuum Science and Technology,2020,40(05):458-464 doi: 10.13922/j.cnki.cjovst.2020.05.12
|
[8] |
Wu M C,Ye C,Liu X Y. Influence of 27.12 MHz bias on properties of magnetron sputtering ion beam: a methodological study[J]. Chinese Journal of Vacuum Science and Technology,2020,40(4):373−380 (吴茂成,叶超,刘溪悦. 27.12 MHz基片偏压在调控磁控溅射离子能量中的作用研究[J]. 真空科学与技术学报,2020,40(4):373−380(in chinese)
Wu M C, Ye C, Liu X Y. Influence of 27.12 MHz bias on properties of magnetron sputtering ion beam: a methodological study [J]. Chinese Journal of Vacuum Science and Technology,2020,40(04):373-380
|
[9] |
Binwal S,Joshi J K,Karkari S K,et al. An electrical impedance-based technique to infer plasma density in a 13.56-MHz magnetized capacitive coupled RF discharge[J]. IEEE Transactions on Plasma Science,2021,49(11):3582−3588 doi: 10.1109/TPS.2021.3121999
|
[10] |
Bera K,Chen C A,Vitello P. Plasma impedance in a narrow gap capacitively coupled RF discharge[J]. IEEE transactions on plasma science,2002,30(1):144−145 doi: 10.1109/TPS.2002.1003965
|
[11] |
刘继舒. 大功率射频激光电源的仿真设计[D]. 华中科技大学, 2009.05
LIU J S. Simulation and design of high power radio frequency laser power supply[D].Huazhong University of Science and Technology,2009.05
|
[12] |
薛婵. 脉冲调制射频感性耦合Ar/O2及Ar等离子体的实验诊断研究[D]. 大连: 大连理工大学, 2019
[12] Xue C. Experimental investigations of pulse modulated radio frequency inductive coupled Ar/O2 and Ar plasmas[D].Dalian University of Technology,20193
|
[13] |
F. Schneider, The Mechanism of high frequency discharge between level plates [Z]. Angew. Phys. 6(1954) 456
|
[14] |
Godyak V A,Piejak R B. Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz[J]. Physical review letters,1990,65(8):996 doi: 10.1103/PhysRevLett.65.996
|
[15] |
Chabert P,Levif P,Raimbault J L,et al. Electron heating in multiple-frequency capacitive discharges[J]. Plasma Physics and Controlled Fusion,2006,48(12B):B231−B237 doi: 10.1088/0741-3335/48/12B/S22
|
[16] |
Lafleur T,Boswell R W,Booth J P. Enhanced sheath heating in capacitively coupled discharges due to non-sinusoidal voltage waveforms[J]. Applied Physics Letters,2012,100(19):194101 doi: 10.1063/1.4712128
|
[17] |
Michael A L, Allan J L. Principles of plasma discharges and materials processing, second edition [M]. John Wiley &Sons, 2018
|
[18] |
Stranak V, Herrendorf A P, Drache S, et al. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma[J]. Journal of Applied Physics, 2012 (9)
|
[19] |
Lee H Y,Lee D K,Kang D H,et al. The effect of r. f. substrate bias on the properties of carbon nitride films produced by an inductively coupled plasma chemical vapor deposition[J]. Surface Coatings Technology,2005,193(1-3):152−156 doi: 10.1016/j.surfcoat.2004.08.134
|