[1] |
Luo M,Bai T,Guo H. Development of photocathode and device of near-shortwave infrared extension[J]. International Symposium on Photoelectronic Detection and Imaging 2013:Low-Light-Level Technology and Applications. SPIE,2013,8912:95−101
|
[2] |
Egorenkov A A,Zubkov V I. Investigation of the quantum efficiency degradation over time for InGaAs photocathodes in hybrid devices for near infrared spectral range[J]. Journal of Physics:Conference Series. IOP Publishing,2021,1799(1):012007 doi: 10.1088/1742-6596/1799/1/012007
|
[3] |
Chen L,Shen Y,Yang X,et al. Research on Cs/O activation process of near-infrared In0.53Ga0.47As photocathodes[J]. Journal of Alloys and Compounds,2020,831:154869 doi: 10.1016/j.jallcom.2020.154869
|
[4] |
Егоренков А А,Зубков В И,Соломонов А В,et al. Гибридный матричный фотоприемник для ИК-области спектра[J]. Известия СПбГЭТУ ЛЭТИ,2021(4):15−22
|
[5] |
Bell R L,James L W,Moon R L. Transferred electron photoemission from InP[J]. Applied Physics Letters,1974,25(11):645−646 doi: 10.1063/1.1655343
|
[6] |
Gregory P E,Escher J S,Saxena R R,et al. Field‐assisted photoemission to 2.1 microns from a Ag/p‐In0.77Ga0.23As photocathode[J]. Applied Physics Letters,1980,36(8):639−640 doi: 10.1063/1.91608
|
[7] |
Escher J S,Bell R L,Gregory P E,et al. Field-assisted semiconductor photoemitters for the 1—2 μm range[J]. IEEE Transactions on Electron Devices,1980,27(7):1244−1250 doi: 10.1109/T-ED.1980.20015
|
[8] |
Niigaki M,Hirohata T,Suzukki T,et al. Field-assisted photoemission from InP/InGaAsP photocathode with p/n junction[J]. Applied physics letters,1997,71(17):2493−2495 doi: 10.1063/1.120098
|
[9] |
Niigaki M,Hirohata T,Mimura H. Room temperature photoemission up to a wavelength threshold of 2.3 μm from n+-InAs0.4P0.6/p−-InAs0.4P0.6/p−-ln0.7Ga0.3As field-assisted photocathode[J]. Applied Physics Express,2014,7(11):112201−112201 doi: 10.7567/APEX.7.112201
|
[10] |
Zhou Z H,Xu X Y,Liu H L,et al. High quantum efficiency InP/In_ (0.53)Ga_ (0.47) As/InP infrared photocathode simulation[J]. Infrared and Laser Engineering,2019,48(02):247−253 (周振辉,徐向晏,刘虎林,等. 高量子效率InP/In_(0.53)Ga_(0.47)As/InP红外光电阴极模拟[J]. 红外与激光工程,2019,48(02):247−253(in chinese)
Zhou Z H, Xu X Y, Liu H L, et al. High quantum efficiency InP/In_ (0.53)Ga_ (0.47) As/InP infrared photocathode simulation[J]. Infrared and Laser Engineering, 2019, 48(02): 247-253
|
[11] |
Sun Q X,Xu X Y,An Y B,et al. Simulation study on time response characteristics of InP/InGaAs/InP infrared photocathode[J]. Infrared and Laser Engineering,2013,42(12):3163−3167 (孙巧霞,徐向晏,安迎波,等. InP/InGaAs/InP红外光电阴极时间响应特性的模拟研究[J]. 红外与激光工程,2013,42(12):3163−3167(in chinese)
Sun Q X, Xu X Y, An Y B, et al. Simulation study on time response characteristics of InP/InGaAs/InP infrared photocathode[J]. Infrared and Laser Engineering, 2013, 42(12): 3163-3167 (in chinese)
|
[12] |
Li J M,Guo L H,Hou X. Theoretical calculation of quantum efficiency for field-assisted InP/InGaAsP semiconductor photocathodes[J]. Acta Physica Sinica,1992,41(10):1672−1678 (李晋闽,郭里辉,侯洵. 场助InP/InGaAsP半导体光电阴极量子效率的理论计算[J]. 物理学报,1992,41(10):1672−1678(in chinese) doi: 10.7498/aps.41.1672
Li J M, Guo L H, Hou X. Theoretical calculation of quantum efficiency for field-assisted InP/InGaAsP semiconductor photocathodes[J]. Acta Physica Sinica, 1992, 41(10): 1672-1678 (in chinese) doi: 10.7498/aps.41.1672
|
[13] |
Li J M,Guo L H,Wang C R,et al. Calculation of heterojunction conduction band for a field-assisted InP/InGaAsP/InP semiconductor photocathodes[J]. Acta Optica Sinica,1992,12(9):830−834 (李晋闽,郭里辉,王存让,等. 场助InP/InGaAsP/InP半导体光电阴极异质结能带的计算[J]. 光学学报,1992,12(9):830−834(in chinese)
Li J M, Guo L H, Wang C R, et al. Calculation of heterojunction conduction band for a field-assisted InP/InGaAsP/InP semiconductor photocathodes[J]. Acta Optica Sinica, 1992, 12(9): 830-834 (in chinese)
|
[14] |
Li Jinmin,Guo L H,Hou X. et al. Field-assisted semiconductor phontcathode with InGaAsP/InP heterojunction[J]. Acta Optica Sinica,1992,12(6):528−532 (李晋闽,郭里辉,侯洵,等. 场助InGaAsP/InP异质结半导体光电阴极的研究[J]. 光学学报,1992,12(6):528−532(in chinese)
Li Jinmin, Guo L H, Hou X. et al. Field-assisted semiconductor phontcathode with InGaAsP/InP heterojunction[J]. Acta Optica Sinica, 1992, 12(6): 528-532 (in chinese)
|
[15] |
Li X M,Hou X,Cheng J,et al. TE photocathode fabrication technology[J]. Semiconductor Technology,1995,8(4):26−28 (李相民,侯洵,程军,等. TE光电阴极制作技术的研究[J]. 半导体技术,1995,8(4):26−28(in chinese)
Li X M, Hou X, Cheng J, et al. TE photocathode fabrication technology[J]. Semiconductor Technology, 1995, 8(4): 26-28 (in chinese)
|
[16] |
Wang X B,Zhang J,Yang J,et al. Performance analysis of 2DEG in mixed polarity GaN-based HEMT[J]. Chinese Journal of Vacuum Science and Technology,2017,37(04):394−399 (王现彬,张晶,杨洁,等. 混合极性GaN基HEMT中2DEG性能分析[J]. 真空科学与技术学报,2017,37(04):394−399(in chinese)
Wang X B, Zhang J, Yang J, et al. Performance analysis of 2DEG in mixed polarity GaN-based HEMT[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(04): 394-399 (in chinese)
|
[17] |
Liu Y Z,Moll J L,Spicer W E. Quantum yield of GaAs semitransparent photocathode[J]. Applied Physics Letters,1970,17(2):60−62 doi: 10.1063/1.1653309
|
[18] |
李敏. NEA光电阴极光谱响应特性研究[D]. 南京理工大学, 2004
Li M. Study on spectral response characteristics of NEA photocathode[D]. Nanjing University of Technology, 2004
|
[19] |
Cai Z P,He J F,Yao J C,et al. Band structure design and simulation of linear-doping grading layer for InGaAs/InP field-assisted pothocathode[J]. Journal of Shaanxi University of Technology(Natural Science Edition),2017,33(2):87−92 (蔡志鹏,何军锋,姚军财,等. 渐变层线性掺杂的InGaAs/InP场助阴极的能带结构设计与仿真[J]. 陕西理工学院学报(自然科学版),2017,33(2):87−92(in chinese)
Cai Z P, He J F, Yao J C, et al. Band structure design and simulation of linear-doping grading layer for InGaAs/InP field-assisted pothocathode[J]. Journal of Shaanxi University of Technology(Natural Science Edition), 2017, 33(02): 87-92 (in chinese)
|
[20] |
Liu F,Shi F,Jiao G C,et al. Design and simulation of p-InGaAs/p-InP heterojunction of short-wave infrared threshold field-assisted photocathode[J]. Infrared Technology,2015,37(9):778−782 (刘峰,石峰,焦岗成,等. 短波红外阈场助式光电阴极p-InGaAs/p-InP异质结设计与仿真[J]. 红外技术,2015,37(9):778−782(in chinese)
Liu F, Shi F, Jiao G C, et al. Design and simulation of p-InGaAs/p-InP heterojunction of short-wave infrared threshold field-assisted photocathode[J]. Infrared Technology, 2015, 37(09): 778-782 (in chinese)
|
[21] |
Wang G Y,Fu R G,Yang M Z,et al. Theoretical study on energy conversion of thermally enhanced photoemission of reflective gaas photocathode[J]. Chinese Journal of Vacuum Science and Technology,2018,38(9):779−785 (王贵圆,富容国,杨明珠,等. 反射式GaAs光电阴极的热增强光电发射能量转换理论研究[J]. 真空科学与技术学报,2018,38(9):779−785(in chinese)
Wang G Y, Fu R G, Yang M Z, et al. Theoretical Study on Energy Conversion of Thermally Enhanced Photoemission of Reflective GaAs Photocathode[J]. 2018, 38(09): 779-785
|