[1] Wang Danyang,Wang Peng,Zhang Ling,et al. Advances in the application of low-temperature atmospheric pressure plasma technology in the field of dental care[J]. Chinese Journal of Stomatology,2014,49(09):571−573 (王丹杨,汪鹏,张凌,等. 低温常压等离子体技术在口腔医疗领域的应用进展[J]. 中华口腔医学杂志,2014,49(09):571−573(in chinese) doi: 10.3760/cma.j.issn.1002-0098.2014.09.014 Wang Danyang, Wang Peng, Zhang Ling, et al. Advances in the application of low-temperature atmospheric pressure plasma technology in the field of dental care[J]. Chinese Journal of Stomatology, 2014, 49(09): 571-573 (in chinese) doi: 10.3760/cma.j.issn.1002-0098.2014.09.014
[2] Ge Xin,Zhao Baohong. Progress of application of cold atmospheric plasma in dentistry[J]. Chinese Journal of Practical Stomatology,2019,12(01):47−49+53 (葛鑫,赵宝红. 冷等离子体在口腔医学中的应用进展[J]. 中国使用口腔科杂志,2019,12(01):47−49+53(in chinese) Ge Xin, Zhao Baohong. Progress of application of cold atmospheric plasma in dentistry[J]. Chinese Journal of Practical Stomatology, 2019, 12(01): 47-49+53 (in chinese)
[3] Xie Na,Liu Fei,Li Zixia,et al. Application of atmospheric-pressure low-temperature plasma in stomatology: a review[J]. Chinese Journal of Medical Physics,2021,38(02):245−249 (谢娜,刘飞,李子夏,等. 王丹杨. 大气压低温等离子体在口腔医学中应用进展[J]. 中国医学物理学杂志,2021,38(02):245−249(in chinese) doi: 10.3969/j.issn.1005-202X.2021.02.021 Xie Na, Liu Fei, Li Zixia, et al. Application of atmospheric-pressure low-temperature plasma in stomatology: a review[J]. Chinese Journal of Medical Physics, 2021, 38(02): 245-249 (in chinese) doi: 10.3969/j.issn.1005-202X.2021.02.021
[4] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(04): 1339-1358+1425 Mei Danhua, Fang Zhi, Shao Tao, Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(04): 1339-1358+1425
[5] Zhu Hongcheng,Chen Yanling,You Zhanhua,et al. Precise bacteria sterilization with self-designed micro plasma plume jet: an instrumentation study[J]. Chinese Journal of Vacuum Science and Technology,2022,40(12):1143−1151 (朱鸿成,陈彦伶,游占华,等. 实现精准细菌灭活的微型等离子体射流装置设计与实验研究[J]. 真空科学与技术学报,2022,40(12):1143−1151(in chinese) Zhu Hongcheng, Chen Yanling, You ZhanHua, et al. Precise Bacteria Sterilization with Self-Designed Micro Plasma Plume Jet: An Instrumentation Study[J]. Chinese Journal of Vacuum Science and Technology, 2022, 40(12): 1143-1151 (in chinese)
[6] Shao Tao,Zhang Cheng,Wang Ruixue,et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering,2016,42(03):685−705 (邵涛,章程,王瑞雪,等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术,2016,42(03):685−705(in chinese) doi: 10.13336/j.1003-6520.hve.20160308018 Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure Pulsed Gas Discharge and Pulsed Plasma Application[J]. High Voltage Engineering, 2016, 42(03): 685-705 (in chinese) doi: 10.13336/j.1003-6520.hve.20160308018
[7] Li Wenhao,Tian Chao,Feng Shenshen,et al. Advance in atmospheric pressure plasma jet and its applications[J]. Chinese Journal of Vacuum Science and Technology,2018,38(08):695−707 (李文浩,田朝,冯绅绅,等. 大气压等离子体射流装置及应用研究进展[J]. 真空科学与技术学报,2018,38(08):695−707(in chinese) doi: 10.13922/j.cnki.cjovst.2018.08.09 Li Wenhao, Tian Chao, Feng Shenshen, et al. Advance in Atmospheric Pressure Plasma Jet and Its Applications[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(08): 695-707 (in chinese) doi: 10.13922/j.cnki.cjovst.2018.08.09
[8] Yu Yongbo,Yang Lanlan,Tu Yan,et al. Properties of atmospheric argon plasma jet generated by pulse-modulated sinusoidal high voltage[J]. Chinese Journal of Vacuum Science and Technology,2015,35(07):850−854 (俞永波,杨兰兰,屠彦,等. 脉冲调制型大气压低温氩等离子体射流研究[J]. 真空科学与技术学报,2015,35(07):850−854(in chinese) Yu Yongbo, Yang Lanlan, Tu Yan, et al. Properties of Atmospheric Argon Plasma Jet Generated by Pulse-Modulated Sinusoidal High Voltage[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(07): 850-854 (in chinese)
[9] Xiong Zilan,Lu Xinpei,Xian Yubin,et al. Atmospheric pressure low temperature plasma jets and their biomedical applications[J]. Science & Technology Review,2010,28(15):97−105 (熊紫兰,卢新培,鲜于斌,等. 大气压低温等离子体射流及其生物医学应用[J]. 科技导报,2010,28(15):97−105(in chinese) Xiong Zilan, Lu Xinpei, Xian Yubin, et al. Atmospheric Pressure Low Temperature Plasma Jets and Their Biomedical Applications[J]. Science & Technology Review, 2010, 28(15): 97-105 (in chinese)
[10] 袁洽劻. 实用消毒灭菌技术[M]. 北京: 化学工业出版社, 2002 Yuan Qiakuang. practical disinfection and sterilization technology[M]. Beijing: Chemical Industry Press, 2002
[11] Xue Guangbo. Modern disinfection and its research progress[J]. Shanghai Journal of Preventive Medicine,2004,16(7):355−358 (薛广波. 现代消毒学及其进展[J]. 上海预防医学杂志,2004,16(7):355−358(in chinese) Xue Guangbo. Modern disinfection and its research progress[J]. Shanghai Journal of Preventive Medicine, 2004, 16(7): 355-358 (in chinese)
[12] Zhang Yuhan,Zhu Hongcheng,Du Xiaoxia,et al. Micro plasma jet devices for micron sterilization range control[J]. Optics and Precision Engineering,2022,30(03):296−309 (张雨晗,朱鸿成,杜晓霞,等. 实现微米级灭菌范围控制的微细等离子体射流装置[J]. 光学精密工程,2022,30(03):296−309(in chinese) Zhang Yuhan, Zhu Hongcheng, Du Xiaoxia, et al. Micro plasma jet devices for micron sterilization range control[J]. Optics and Precision Engineering, 2022, 30(03): 296-309 (in chinese)
[13] Lim J S,Kim R H,Hong Y J,et al. Interactions between atmospheric pressure plasma jet and deionized water surface[J]. Results in Physics,2020,19:103569 doi: 10.1016/j.rinp.2020.103569
[14] Muneekaew S,Huang Y H,Wang M J. Selective killing effects of atmospheric pressure plasma jet on human melanoma and lewis lung carcinoma cells[J]. Plasma Chemistry and Plasma Processing,2021,41(6):1613−1629 doi: 10.1007/s11090-021-10197-0
[15] Huang Y M,Chang W C,Hsu C L. Inactivation of norovirus by atmospheric pressure plasma jet on salmon sashimi[J]. Food Research International,2021,141:110108 doi: 10.1016/j.foodres.2021.110108
[16] Wang Tao,Wang Jiahao,Wang Shengquan,et al. Research on Uniformity of an Atmospheric He/O2 Microplasma Jet Array and its Film Processing[J]. Chinese Journal of Vacuum Science and Technology,2021,41(10):1001−1008 (王涛,汪加豪,王圣泉,等. 大气压He/O2微等离子体射流阵列及其薄膜处理均一性研究[J]. 真空科学与技术学报,2021,41(10):1001−1008(in chinese) Wang Tao, Wang Jiahao, Wang Shengquan, et al. Research on Uniformity of an Atmospheric He/O2 Microplasma Jet Array and its Film Processing[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(10): 1001-1008 (in chinese)
[17] Zhang Bo,Wang Lifeng,Liu Feng,et al. Comparison on Discharge Characteristics of the Helium Plasma Jet Array Excited by Alternating Current and Nanosecond Pulse Voltage[J]. Transactions of China Electrotechnical Society,2019,34(06):1319−1328 (张波,汪立峰,刘峰,等. 交流和纳秒脉冲激励氦气中等离子体射流阵列放电特性比较[J]. 电工技术学报,2019,34(06):1319−1328(in chinese) doi: 10.19595/j.cnki.1000-6753.tces.180174 Zhang Bo, Wang Lifeng, Liu Feng, et al. Comparison on Discharge Characteristics of the Helium Plasma Jet Array Excited by Alternating Current and Nanosecond Pulse Voltage[J]. Transactions of China Electrotechnical Society, 2019, 34(06): 1319-1328 (in chinese) doi: 10.19595/j.cnki.1000-6753.tces.180174
[18] Ma Yiyang,Zhang Cheng,Kong Fei,et al. Effect of Plasma Jet Array Assisted Film Deposition on Epoxy Resin Surface Electrical Characteristics[J]. High Voltage Engineering,2018,44(09):3089−3096 (马翊洋,章程,孔飞,等. 等离子体射流阵列辅助薄膜沉积对环氧树脂表面电气特性的影响[J]. 高电压技术,2018,44(09):3089−3096(in chinese) doi: 10.13336/j.1003-6520.hve.20180828041 Ma Yiyang, Zhang Cheng, Kong Fei, et al. Effect of Plasma Jet Array Assisted Film Deposition on Epoxy Resin Surface Electrical Characteristics[J]. High Voltage Engineering, 2018, 44(09): 3089-3096 (in chinese) doi: 10.13336/j.1003-6520.hve.20180828041
[19] Wang R X,Xu H,Zhao Y,et al. Spatial-Temporal Evolution of a Radial Plasma Jet Array and Its Interaction with Material[J]. Plasma Chemistry and Plasma Processing,2019,39(1):187−203 doi: 10.1007/s11090-018-9929-8
[20] Cao Z,Walsh J L,Kong M G. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment[J]. Applied Physics Letters,2009,94(2):021501 doi: 10.1063/1.3069276
[21] Weltmann K D,Fricke K,Stieber M,et al. New nonthermal atmospheric-pressure plasma sources for decontamination of human extremities[J]. IEEE Transactions on Plasma Science,2012,40(11):2963−2969 doi: 10.1109/TPS.2012.2204279
[22] Chen Hongyu,Zhang Yong,Liu Zhen,et al. Experimental study on spores treatment by array plasma jet[J]. High Power Laser and Particle Beams,2022,34(09):150−158 (陈竑钰,张勇,刘振,等. 阵列式等离子体射流处理芽孢的实验研究[J]. 强激光与粒子束,2022,34(09):150−158(in chinese) Chen Hongyu, Zhang Yong, Liu Zhen, et al. Experimental study on spores treatment by array plasma jet[J]. High Power Laser and Particle Beams, 2022, 34(09): 150-158 (in chinese)
[23] Butcher D J. Recent advances in optical analytical atomic spectrometry[J]. Applied Spectroscopy Reviews,2013,48(4):261−328 doi: 10.1080/05704928.2012.717570
[24] Stein R S,Rundle R E. On the nature of the interaction between starch and iodine[J]. The Journal of Chemical Physics,1948,16(3):195−207 doi: 10.1063/1.1746834
[25] Yang Jinchuan,An Jinglong,Li Cong,et al. Study on detecting method of toxic agent containing phosphorus (simulation agent) by optical emission spectroscopy of atmospheric pressure low-temperature plasma[J]. Spectroscopy and Spectral Analysis,2022,42(06):1728−1734 (杨金传,安金龙,李聪,等. 大气压低温等离子体发射光谱检测含磷有毒气体(模拟剂)方法研究[J]. 光谱学与光谱分析,2022,42(06):1728−1734(in chinese) Yang Jinchuan, An Jinglong, Li Cong, et al. Study on Detecting Method of Toxic Agent Containing Phosphorus(Simulation Agent) by Optical Emission Spectroscopy of Atmospheric Pressure Low-Temperature Plasma[J]. Spectroscopy and Spectral Analysis, 2022, 42(06): 1728-1734 (in chinese)
[26] Cai Yixi,Sun Chuanhong,Wang Jun,et al. Emission spectrum from dielectric barrier discharge plasma under atmosphere pressure[J]. Journal of Jiangsu University (Natural Science Edition),2012,33(005):518−521 (蔡忆昔,孙传红,王军,等. 大气压下介质阻挡放电的发射光谱[J]. 江苏大学学报(自然科学版),2012,33(005):518−521(in chinese) Cai Yixi, Sun Chuanhong, Wang Jun, et al. Emission spectrum from dielectric barrier discharge plasma under atmosphere pressure[J]. Journal of Jiangsu University(Natural Science Edition), 2012, 33(005): 518-521 (in chinese)
[27] Xiao D,Cheng C,Shen J,et al. Characteristics of atmospheric-pressure non-thermal N2 and N2/O2 gas mixture plasma jet[J]. Journal of Applied Physics,2014,115(3):033303 doi: 10.1063/1.4862304
[28] Marklund S. Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase[J]. Biological Chemistry,1976,251:7504−7507 doi: 10.1016/S0021-9258(17)32878-8
[29] Ikawa S,Tani A,Nakashima Y,et al. Physicochemical properties of bactericidal plasma-treated water[J]. Journal of Physics D:Applied Physics,2016,49(42):425401 doi: 10.1088/0022-3727/49/42/425401
[30] Bradu C,Kutasi K,Magureanu M,et al. Reactive nitrogen species in plasma-activated water. : generation, chemistry and application in agriculture[J]. Journal of Physics D:Applied Physics,2020,53(22):223001 doi: 10.1088/1361-6463/ab795a
[31] Traylor M J,Pavlovich M J,Karim S,et al. Long-term antibacterial efficacy of air plasma-activated water[J]. Journal of Physics D:Applied Physics,2011,44(47):472001 doi: 10.1088/0022-3727/44/47/472001
[32] Naitali M,Kamgang-Youbi G,Herry J M,et al. Combined effects of long-living chemical species during microbial inactivation using atmospheric plasma- treated water[J]. Applied and environmental microbiology,2010,76(22):7662−7664 doi: 10.1128/AEM.01615-10
[33] Szili E J,Oh J S,Hong S H,et al. Short. Probing the transport of plasma-generated RONS in an agarose target as surrogate for real tissue: dependency on time, distance and material composition[J]. Journal of Physics D:Applied Physics,2015,48(20):202001 doi: 10.1088/0022-3727/48/20/202001
[34] Kawasaki T,Sato A,Kusumegi S,et al. Two-dimensional concentration distribution of reactive oxygen species transported through a tissue phantom by atmospheric-pressure plasma-jet irradiation[J]. Applied Physics Express,2016,9(7):076202 doi: 10.7567/APEX.9.076202
[35] Lu X,Naidis G V,Laroussi M,et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects[J]. Physics Reports,2016,630:1−84 doi: 10.1016/j.physrep.2016.03.003