[1] Dong Q,Cheng Z,Yuan Z,et al. Sewerage surveillance tracking characteristics of human antibiotic emission in sewage[J]. Journal of Cleaner Production,2022,364
[2] Bongers W,Bouwmeester H,Wolf B,et al. Plasma-driven dissociation of CO2 for fuel synthesis[J]. Plasma Processes and Polymers,2017,14(6)
[3] Rumbach P,Xu R,Go D B. Electrochemical production of oxalate and formate from CO2 by solvated electrons produced using an atmospheric-pressure plasma[J]. Journal of The Electrochemical Society,2016,163(10):F1157−F61 doi: 10.1149/2.0521610jes
[4] Wang L,Yi Y,Guo H,et al. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2[J]. ACS Catalysis,2017,8(1):90−100
[5] Shen J,Zhang H,Xu Z,et al. Preferential production of reactive species and bactericidal efficacy of gas-liquid plasma discharge[J]. Chemical Engineering Journal,2019,362:402−12 doi: 10.1016/j.cej.2019.01.018
[6] Song W,Zhang Y,Yu J,et al. Rapid removal of polyacrylamide from wastewater by plasma in the gas-liquid interface[J]. J Environ Sci (China),2019,83:1−7 doi: 10.1016/j.jes.2019.03.015
[7] Yi K,Liu D,Chen X,et al. Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications[J]. Acc Chem Res,2021,54(4):1011−22 doi: 10.1021/acs.accounts.0c00757
[8] Scholtz V,Pazlarova J,Souskova H,et al. Nonthermal plasma--A tool for decontamination and disinfection[J]. Biotechnol Adv,2015,33(6 Pt 2):1108−19
[9] Fan J,Wu H,Liu R,et al. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts[J]. Environmental Science and Pollution Research,2020,28(3)
[10] Wang X,Mei J,Luo J,et al. Process intensification of Tetrabromobisphenol S removal with a bubble-film hybrid plasma reactor[J]. Chemical Engineering Journal,2022,427
[11] Ramakers M,Michielsen I,Aerts R,et al. Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge[J]. Plasma Processes and Polymers,2015,12(8):755−63 doi: 10.1002/ppap.201400213
[12] Xu S,Whitehead J C,Martin P A. CO2 conversion in a non-thermal, barium titanate packed bed plasma reactor: The effect of dilution by Ar and N2[J]. Chemical Engineering Journal,2017,327:764−73 doi: 10.1016/j.cej.2017.06.090
[13] Mei D,Tu X. Atmospheric pressure non-thermal plasma activation of CO2 in a packed-bed dielectric barrier discharge reactor[J]. Chemphyschem,2017,18(22):3253−9 doi: 10.1002/cphc.201700752
[14] Liu X,Lv P,Yao G,et al. Microwave-assisted synthesis of selective degradation photocatalyst by surface molecular imprinting method for the degradation of tetracycline onto ClTiO2[J]. Chemical Engineering Journal,2013,217(217)
[15] Huang W J,Deng,L,Jiang S,et al. High-pressure pulse discharge plasma treatment of drilling fluid wastewater[J]. Industrial Water Treatment,2018,38(06):57−60 (黄文章,邓磊,蒋姝,等. 高压脉冲放电等离子体处理钻井液废水[J]. 工业水处理,2018,38(06):57−60(in chinese) Huang W J, Deng, L, Jiang S, Wang, S F, Wang, C X, and Li L. High-pressure pulse discharge plasma treatment of drilling fluid wastewater[J] Industrial Water Treatment, 2018, 38(06): 57-60
[16] Wang Q,Li P,Zhang Z,et al. Kinetics and mechanism insights into the photodegradation of tetracycline hydrochloride and ofloxacin mixed antibiotics with the flower-like BiOCl/TiO2 heterojunction[J]. Journal of Photochemistry and Photobiology A:Chemistry,2019,378:114−24 doi: 10.1016/j.jphotochem.2019.04.028
[17] Zhang X,Wang F,Wang C,et al. Photocatalysis activation of peroxodisulfate over the supported Fe3O4 catalyst derived from MIL-88A(Fe) for efficient tetracycline hydrochloride degradation[J]. Chemical Engineering Journal,2021,426
[18] Peleg M. The chemistry of ozone in the treatment of water[J]. Water Research,1976,10(5):361−365 doi: 10.1016/0043-1354(76)90052-X
[19] Wang X C,Zhang T H,Sun Y,et al. Numerical study on discharge characteristics and plasma chemistry in atmospheric CO2 discharges driven by pulsed voltages[J]. Physics of Plasmas,2022,29(2):023505 doi: 10.1063/5.0080735
[20] Kozák T,Bogaerts A. Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model[J]. Plasma Sources Science and Technology,2014,24(1):015024 doi: 10.1088/0963-0252/24/1/015024
[21] Snoeckx R,Bogaerts A. Plasma technology–a novel solution for CO2 conversion?[J]. Chemical Society Reviews,2017,46(19):5805−5863 doi: 10.1039/C6CS00066E
[22] Takamatsu T,Uehara K,Sasaki Y,et al. Investigation of reactive species using various gas plasmas[J]. RSC Adv,2014,4(75):39901−5 doi: 10.1039/C4RA05936K
[23] Liu D X,Bruggeman P,Iza F,et al. Global model of low-temperature atmospheric-pressure He+ H2O plasmas[J]. Plasma Sources Science and Technology,2010,19(2):025018 doi: 10.1088/0963-0252/19/2/025018
[24] Rothwell J G,Alam D,Carter D A,et al. The antimicrobial efficacy of plasma-activated water against Listeria and E. coli is modulated by reactor design and water composition[J]. J Appl Microbiol,2022,132(4):2490−500 doi: 10.1111/jam.15429
[25] Wang J,Zhi D,Zhou H,et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti(4)O(7) anode[J]. Water Res,2018,137:324−34 doi: 10.1016/j.watres.2018.03.030
[26] Zhang X W,Wang F,Wang C C,et al. Photocatalysis activation of peroxodisulfate over the supported Fe3O4 catalyst derived from MIL-88A (Fe) for efficient tetracycline hydrochloride degradation[J]. Chemical Engineering Journal,2021,426:131927 doi: 10.1016/j.cej.2021.131927
[27] Li H,Sun S,Ji H,et al. Enhanced activation of molecular oxygen and degradation of tetracycline over Cu-S4 atomic clusters[J]. Applied Catalysis B:Environmental,2020,272:118966 doi: 10.1016/j.apcatb.2020.118966
[28] Xu M,Deng J,Cai A,et al. Comparison of UVC and UVC/persulfate processes for tetracycline removal in water[J]. Chemical Engineering Journal,2020,384:123320 doi: 10.1016/j.cej.2019.123320
[29] Guo D,Liu Y,Ji H,et al. Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement[J]. Environmental Science & Technology,2021,55(6):4045−4053
[30] Chen Y,Yin R,Zeng L,et al. Insight into the effects of hydroxyl groups on the rates and pathways of tetracycline antibiotics degradation in the carbon black activated peroxydisulfate oxidation process[J]. Journal of Hazardous Materials,2021,412:125256 doi: 10.1016/j.jhazmat.2021.125256
[31] Kubiak A,Bielan Z,Kubacka M,et al. Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline[J]. Applied Surface Science,2020,520:146344.(417)
[32] Hu Y,Chen D,Zhang R,et al. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway[J]. Journal of Hazardous Materials,2021,419:126495 doi: 10.1016/j.jhazmat.2021.126495
[33] Wang H,Liao B,Lu T,et al. Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@CeO2 heterostructured microspheres: Structural characterization and reaction mechanism[J]. Journal of hazardous materials,2020,385:121552 doi: 10.1016/j.jhazmat.2019.121552
[34] Ye Z,Li J,Zhou M,et al. Well-dispersed nebula-like ZnO/CeO2@ HNTs heterostructure for efficient photocatalytic degradation of tetracycline[J]. Chemical Engineering Journal,2016,304:917−933 doi: 10.1016/j.cej.2016.07.014
[35] Li S,Wang C,Liu Y,et al. Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: performance, mechanism insight and toxicity assessment[J]. Chemical Engineering Journal,2022,429:132519 doi: 10.1016/j.cej.2021.132519
[36] Li S,Wang C,Liu Y,et al. Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic pnheterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism[J]. Chemical Engineering Journal,2021,415:128991 doi: 10.1016/j.cej.2021.128991