[1] Wang H,Xu M,Zheng R. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures.[J]. Acta Physica Sinica,2020,69(1):017301 doi: 10.7498/aps.69.20191486
[2] Vogel E M,Robinson J A. Two-dimensional layered transition-metal dichalcogenides for versatile properties and applications.[J]. MRS Bulletin,2015,40(7):558−563 doi: 10.1557/mrs.2015.120
[3] Guo B,Xiao Q,Wang S,Zhang H. 2D layered materials: synthesis, nonlinear optical properties, and device applications.[J]. Laser & Photonics Reviews,2019,13:1800327
[4] Choi W,Nitin C,Han G,et al. Recent development of two-dimensional transition metal dichalcogenides and their applications.[J]. Materials Today,2016,20(3):116−130
[5] Xu R,Ji W,Cheng Z H,et al. Visualization of strain-engineered nanopattern in center-confined mesoscopic WS2 monolayer flakes.[J]. The Journal of Physical Chemistry C,2022,126(16):7184−7192 doi: 10.1021/acs.jpcc.1c10538
[6] Wang Q H,Kalantar-Zadeh K,Kis A,et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.[J]. Nature nanotechnology,2012,7(11):699−712 doi: 10.1038/nnano.2012.193
[7] Naik S,Pradhan A,Mishra A,et al. Evolution of structural properties in Fe intercalated 2H-NbSe2: phase transformation induced by strong host–guest interaction.[J]. The Journal of Physical Chemistry C,2022,126(32):13762−13773 doi: 10.1021/acs.jpcc.2c03511
[8] Pei S H,Wang Z H,Xia J. Interlayer coupling: an additional degree of freedom in two-dimensional materials[J]. ACS nano,2022,16(8):11498−11503 doi: 10.1021/acsnano.1c11498
[9] Doran N, Wexler G, Woolley A. Fermi surfaces, charge-transfer and charge-density-waves in 4Hb-TaS2. [J]. Journal of Physics C: Solid State Physics, 1978, 11 (14).
[10] Hong X,Kim J,Shi S F,et al. Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures.[J]. Nature nanotechnology,2014,9:682−686 doi: 10.1038/nnano.2014.167
[11] Seyler K L,Rivera P,Yu H,et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers.[J]. Nature,2019,567(7746):66−70 doi: 10.1038/s41586-019-0957-1
[12] Lado J L,Liljeroth P. A layered unconventional superconductor.[J]. Nature Physics,2021,17:1287−1288 doi: 10.1038/s41567-021-01391-0
[13] Persky E,Bjørlig A V,Feldman I,et al. Magnetic memory and spontaneous vortices in a van der Waals superconductor.[J]. Nature,2022,607:692−696 doi: 10.1038/s41586-022-04855-2
[14] Mi S,Guo J,Wang H,et al. Scanning Kelvin probe microscopy study of magnetic topological insulators MnBi2Te4 (Bi2Te3)n.[J]. Chinese Journal of Vacuum Science and Technology,2022,42(08):584−591
[15] Yao J,Wang H,Yuan B,et al. Ultrathin van der waals antiferromagnet CrTe3 for fabrication of In-plane CrTe3/CrTe2 monolayer magnetic heterostructures.[J]. Advanced Materials,2022,34:2200236 doi: 10.1002/adma.202200236
[16] Sha Z,Wu X,Zhu G. Effect of annealing temperature on the structure and optical properties of SiC thin films.[J]. Microfabrication Technology,2006(01):23−26
[17] Lin H,Xie E,Ma Z,et al. Study of 3C-SiC and 4H-SiC films deposited using RF sputtering method.[J]. Acta Physica Sinica,2004,53(8):2780−2785 doi: 10.7498/aps.53.2780
[18] Song S,Shen H,Wang M,et al. Influence of manganese doping on microstructures and optical properties of SiC films.[J]. Chinese Journal of Vacuum Science and Technology,2008,28(03):240−243
[19] Devarakonda A,Kriener M,Kaxiras E,et al. Clean 2D superconductivity in a bulk van der waals superlattice.[J]. Science,2020,370:231−236 doi: 10.1126/science.aaz6643
[20] Aribak R, Majlin S, Mograbi M, et al. Chiral superconductivity in the alternate stacking compound 4Hb-TaS2[J]. Science Advances. 2020, 6 (13).
[21] Nayak A K,Steinbok A,Roet Y,et al. Evidence of topological boundary modes with topological nodal-point superconductivity.[J]. Nature Physics,2021,17:1413−1419 doi: 10.1038/s41567-021-01376-z
[22] Wilson J,Salvo D,Mahajan S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides.[J]. Advances in Physics,2001,50(8):1171−1248 doi: 10.1080/00018730110102718
[23] Silber I, Mathimalar S, Mangel I, et al. Chiral to nematic crossover in the superconducting state of 4Hb-TaS2, arXiv: 2208.14442v1, (2022).
[24] Wang Z Y,Sun Y Y,Abdelwahab I,et al. Surface-limited superconducting phase transition on 1T-TaS2.[J]. ACS nano,2018,12(12):12619−12628 doi: 10.1021/acsnano.8b07379
[25] Wu X,Wei J,Chang D,et al. Application and research status of kelvin probe force microscope.[J]. Micronanoelectronic Technology,2018,55(10):751−756
[26] Muñoz-Rojo M,Caballero-Calero O,Martín-González M. Electrical contact resistances of thermoelectric thin films measured by kelvin probe microscopy.[J]. Applied Physics Letters,2013,103(18):183905 doi: 10.1063/1.4826684
[27] Jin C,Xu J,Wang H,et al. High-sensitivity Kelvin probe force microscope measurement method and its research status.[J]. Micronanoelectronic Technology,2021,58(06):545−557
[28] Daiki S, Zheng L, Kazutomo S, et al. Direct observation of mono-layer, bi-layer, and tri-layer charge density waves in 1T-TaS2 by transmission electron microscopy without a substrate. [J]. npj Quantum Materials. 2017, 2 (1).
[29] Sung S H,Schnitzer N,Novakov S,et al. Two-dimensional charge order stabilized in clean polytype heterostructures.[J]. Nature communications,2022,13:413 doi: 10.1038/s41467-021-27947-5
[30] Zhang A,Liang Y X,Zhang H,et al. Doping regulation in transition metal compounds for electrocatalysis.[J]. Chemical Society reviews,2021,50(17):9817−9844 doi: 10.1039/D1CS00330E
[31] Liu Y,Li L J,Sun Y P,et al. Coexistence of superconductivity and commensurate charge density wave in 4Hb-TaS2-xSex single crystals[J]. Journal of Applied Physics,2014,115(4):043915 doi: 10.1063/1.4863311
[32] Liu Y, Li L J, Sun Y P, et al. Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS2−xSex, Applied Physics Letters. 2013, 102 (25): 192602.
[33] Liu C Z,Li G P,Yuan F S,et al. Stacking faults in Zr(Fe, Cr)2 Laves structured secondary phase particle in Zircaloy-4 alloy.[J]. Nanoscale,2018,10(5):2249−2254 doi: 10.1039/C7NR08963E
[34] Li Z C,Yan X X,Tang Z K,et al. Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2.[J]. Scientific Reports,2017,7(1):8223 doi: 10.1038/s41598-017-08344-9
[35] Koren E,Knoll A W,Duerig U,et al. Direct experimental observation of stacking fault scattering in highly oriented pyrolytic graphite meso-structures.[J]. Nature Communications,2014,5(1):5837 doi: 10.1038/ncomms6837