[1] |
Sozzi E, Nilsson F, Kajtez J, et al. Generation of human ventral midbrain organoids derived from pluripotent stem cells[J]. Current protocols,2022,2(9):e555 doi: 10.1002/cpz1.555
|
[2] |
Cantat-Moltrecht T, Cortiñas R, Ravon B, et al. Long-lived circular Rydberg states of laser-cooled rubidium atoms in a cryostat[J]. Physical Review Research,2020,2(2):022032 doi: 10.1103/PhysRevResearch.2.022032
|
[3] |
Dutt S, Erickson D, Sivanandam S, et al. Preliminary mechanical design of the Gemini Infrared Multi-Object Spectrograph (GIRMOS) Cryostat[C]//Ground-based and Airborne Instrumentation for Astronomy VIII. SPIE, 2020, 11447: 1516-1536
|
[4] |
Komandin G A, Anzin V B, Ulitko V E, et al. Optical cryostat with sample rotating unit for polarization-sensitive terahertz and infrared spectroscopy[J]. Optical Engineering,2020,59(6):061603−061603
|
[5] |
Ardenkjær‐Larsen J H, Bowen S, Petersen J R, et al. Cryogen‐free dissolution dynamic nuclear polarization polarizer operating at 3.35 T, 6.70 T, and 10.1 T[J]. Magnetic Resonance in Medicine,2019,81(3):2184−2194 doi: 10.1002/mrm.27537
|
[6] |
Behler S, Rose M K, Dunphy J C, et al. Scanning tunneling microscope with continuous flow cryostat sample cooling[J]. Review of scientific instruments,1997,68(6):2479−2485 doi: 10.1063/1.1148172
|
[7] |
Alduino C, Alessandria F, Balata M, et al. The CUORE cryostat: An infrastructure for rare event searches at millikelvin temperatures[J]. Cryogenics,2019,102:9−21 doi: 10.1016/j.cryogenics.2019.06.011
|
[8] |
Pilbratt G L, Riedinger J R, Passvogel T, et al. Herschel Space Observatory-An ESA facility for far-infrared and submillimetre astronomy[J]. Astronomy & Astrophysics,2010,518:L1
|
[9] |
Quantum Design Inc. [EB/OL]. USA. 2023. https://qdusa.com/
|
[10] |
Hannachi E, Slimani Y, Ekicibil A, et al. Magneto-resistivity and magnetization investigations of YBCO superconductor added by nano-wires and nano-particles of titanium oxide[J]. Journal of Materials Science:Materials in Electronics,2019,30:8805−8813 doi: 10.1007/s10854-019-01205-3
|
[11] |
胡海韬, 袁宝, 白波, 等. 中国散裂中子源样品变温环境设备技术[J]. 低温工程,2019(228):17−20(in chinese)
Hu D S, Yuan B, Bai B, et al. Study on sample variable temperature environmental equipment technology in China spallation neutron sourc[J]. Cryogenics,2019(228):17−20
|
[12] |
陈国邦, 汤珂. 小型低温制冷机原理[M]. 北京: 科学出版社, 2010 (in chinese)
Chen G B, Tang K. Principle of small low-temperature refrigeration machine[M]. Beijing: Science Publishers, 2010
|
[13] |
张涛. 2K及以下极低温区多级预冷JT复合制冷技术的理论与实验研究[D]. 中国科学院大学(中国科学院上海技术物理研究所), 2022 (in chinese)
Zhang T. Theoretical and experimental investigations on multi-stage precooling JT hybrid cryogenic technology around 2 K and below[D]. University of Chinese Academy of Sciences(Shanghai institute of technical physics Chinese academy of sciences), 2022
|
[14] |
Duband L, Prouve T, Bock J, et al. Sub-kelvin cooling for the bicep array project[J]. arXiv preprint arXiv:2009,0999,7:2020
|
[15] |
Zu H, Dai W, de Waele A. Development of dilution refrigerators—A review[J]. Cryogenics,2022,121:103390 doi: 10.1016/j.cryogenics.2021.103390
|
[16] |
Uhlig K. 3He/4He dilution refrigerator with pulse-tube refrigerator precooling[J]. Cryogenics,2002,42(2):73−77 doi: 10.1016/S0011-2275(02)00002-4
|
[17] |
Gottschall T, Skokov K P, Fries M, et al. Making a cool choice: the materials library of magnetic refrigeration[J]. Advanced Energy Materials,2019,9(34):1901322 doi: 10.1002/aenm.201901322
|
[18] |
Daunt J G. The Magnetic Refrigerator for Temperatures below 1° k[J]. Proceedings of the Physical Society. Section B,1957,70(7):641 doi: 10.1088/0370-1301/70/7/301
|
[19] |
Samani M, Scheller C P, Sedeh O S, et al. Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb-blockade thermometer[J]. Physical Review Research,2022,4(3):033225 doi: 10.1103/PhysRevResearch.4.033225
|
[20] |
Sheik-Bahae M, Epstein R I. Optical refrigeration[J]. nature photonics,2007,1(12):693−699 doi: 10.1038/nphoton.2007.244
|
[21] |
Püschel S, Kränkel C, Tanaka H. Ytterbium-doped KY3F10 as a promising material for optical cryocoolers[C]//Photonic Heat Engines: Science and Applications V. SPIE, 2023, 12437: 23-28
|
[22] |
Mardini-Bovea J, Torres-Díaz G, Sabau M, et al. A review to refrigeration with thermoelectric energy based on the Peltier effect[J]. Dyna,2019,86(208):9−18 doi: 10.15446/dyna.v86n208.72589
|
[23] |
Xu Y, Li Z, Wang J, et al. Man-portable cooling garment with cold liquid circulation based on thermoelectric refrigeration[J]. Applied Thermal Engineering,2022,200:117730 doi: 10.1016/j.applthermaleng.2021.117730
|
[24] |
陈书敏, 石玉美. 低温恒温器简介[J]. 低温与超导,2009,37(06):1−5 (in chinese)
Chen S M, Shi Y M. Brief introduction of cryostat[J]. Cryogenics & Superconductivity,2009,37(06):1−5
|
[25] |
周洁, 王占国, 刘志刚, 等. 硅的低温电学性质[J]. 物理学报,1966(04):404−411 (in chinese)
Zhou J, Wang Z G, Liu Z G, et al. Low temperature electrical properties of silicon material[J]. Acta Physica Sinica,1966(04):404−411
|
[26] |
Brebner J L, Mooser E. Cryostat for optical measurements between 300° K and 4.2° K[J]. Journal of Scientific Instruments,1962,39(2):69 doi: 10.1088/0950-7671/39/2/313
|
[27] |
Kandori A, Ueda M, Ogata H, et al. Development of semi-portable DC-SQUID magnetometer[J]. IEEE Transactions on Applied Superconductivity,1995,5(2):2474−2477 doi: 10.1109/77.403092
|
[28] |
Dong B, Zhou G, Liu L Q, et al. A new cryostat for precise temperature control[C]//AIP Conference Proceedings. American Institute of Physics, 2013, 1552(1): 825-829
|
[29] |
Dewar J, Fleming J A. XXVI. The electrical resistance of metals and alloys at temperatures approaching the absolute zero[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1893,36(220):271−299 doi: 10.1080/14786449308620476
|
[30] |
Onnes H K. Methods and apparatus used in the cryogenic laboratory. XVII. Cryostat for temperature between 27 K and 44 K[C]//KNAW, Proceedings. 1917, 19: 1049-1058
|
[31] |
McMahon H O, Gifford W E. A New Low-Temperature Gas Expansion Cycle: Part I[C]//Advances in Cryogenic Engineering: Proceedings of the 1959 Cryogenic Engineering Conference University of California, Berkeley, California September 2–4, 1959. Springer US, 1960: 354-367
|
[32] |
Capozzi A. Design and performance of a small bath cryostat with NMR capability for transport of hyperpolarized samples[J]. Scientific Reports,2022,12(1):19260 doi: 10.1038/s41598-022-23890-7
|
[33] |
Koshelev S, Tope T, Theilacker J, et al. Design of the cryostat for High Field Vertical Magnet Testing Facility at Fermilab[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2022, 1240(1): 012081
|
[34] |
Ferreira-Teixeira S, Carpinteiro F, Araújo J P, et al. Versatile Seebeck and electrical resistivity measurement setup for thin films[J]. Review of Scientific Instruments,2021,92(4):043904 doi: 10.1063/5.0036817
|
[35] |
Wiens E, Kwong C J, Müller T, et al. A simplified cryogenic optical resonator apparatus providing ultra-low frequency drift[J]. Review of Scientific Instruments,2020,91(4):045112 doi: 10.1063/1.5140321
|
[36] |
Singh D, Singh M K, Singh V. Quantifying the Performance of Multilayer Insulation Technique for Cryogenic Application[C]//Proceedings of the National Workshop on Recent Advances in Condensed Matter and High Energy Physics: CMHEP-2021. Singapore: Springer Nature Singapore, 2022: 163-168
|
[37] |
Kikuchi K, Yamada T, Kohjiro S. Development of superconductor-insulator-superconductor (SIS) terahertz receiver with mechanical and thermal vibration-reduced cryocooler[J]. IEEE transactions on applied superconductivity,2010,21(3):649−653
|
[38] |
Li R, Ikushima Y, Koyama T, et al. Vibration-free pulse tube cryocooler system for gravitational wave detectors, part ii: cooling performance and vibration[C]//Cryocoolers 13. Springer US, 2005: 703-710
|
[39] |
Micke P, Stark J, King S A, et al. Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications[J]. Review of Scientific Instruments,2019,90(6):065104 doi: 10.1063/1.5088593
|
[40] |
Li R, Onishi A, Satoh T, et al. A simple method of temperature stabilization for 4 K GM cryocooler[C]//Proceedings of the Sixteenth International Cryogenic Engineering Conference/International Cryogenic Materials Conference. Elsevier Science, 1997: 355-358
|
[41] |
Okidono K, Oota T, Kurihara H, et al. Temperature oscillation suppression of GM cryocooler[C]//Journal of Physics: Conference Series. IOP Publishing, 2012, 400(5): 052026
|
[42] |
Allweins K, Qiu L M, Thummes G. Damping of intrinsic temperature oscillations in a 4 K pulse tube cooler by means of rare earth plates[C]//AIP Conference Proceedings. American Institute of Physics, 2008, 985(1): 109-116
|
[43] |
Dubuis G, He X, Božović I. Sub-millikelvin stabilization of a closed cycle cryocooler[J]. Review of Scientific Instruments,2014,85(10):103902 doi: 10.1063/1.4896049
|
[44] |
Gao B, Pan C, Chen Y, et al. Realization of an ultra-high precision temperature control in a cryogen-free cryostat[J]. Review of Scientific Instruments,2018,89(10):104901 doi: 10.1063/1.5043206
|
[45] |
Oxford Instrument, Inc. Product list, [EB/OL]. 2023. https://andor.oxinst.com/products/optical-cryostats-for-spectroscopy
|
[46] |
van der Linden P, Vitoux H, Steinmann R, et al. An open flow helium cryostat for synchrotron x-ray diffraction experiments[C]//Journal of Physics: Conference Series. IOP Publishing, 2013, 425(1): 012015
|
[47] |
Advanced Research Systems, Inc. Product list, [EB/OL]. 2023. https://www.arscryo.com/helium-flow-cryostats
|
[48] |
Cryo Industries of America. Product list, [EB/OL]. 2023. http://www.cryoindustries.com/index.html
|
[49] |
Cryomech Inc. Product list, [EB/OL]. 2023. https://www.cryomech.com/cryostats/
|
[50] |
Lake Shore Cryotronics. Product list, [EB/OL]. 2023. https://www.lakeshore.com/products/categories/environment-by-janis/lhe-and-ln-cryostats
|
[51] |
朱元贞, 邵岫渝. 4.2—300K液氦连续流动恒温器[J]. 低温物理,1979(04):295−298 (in chinese)
Zhu Y Z, Shao X Y. 4.2—300K liquid helium continuous flow thermostat[J]. Low Temperature Physical Letters,1979(04):295−298
|
[52] |
郭良珠, 王国香, 冯寿仁. 4.4K制冷恒温器制冷特性的实验研究[J]. 低温与超导,1990(03):9−12 (in chinese)
Guo L Z, Wang G X, Feng S R. Experimental study on the performances of a 4.4K cryostat[J]. Cryogenics & Superconductivity,1990(03):9−12
|
[53] |
丁先庚, 何超峰, 张俊峰, 等. 超导重力仪用液氦恒温器研制[J]. 低温与超导,2013,41(08):5−9 (in chinese)
Ding X G, He C F, Zhang J F, et al. Development of liquid helium cryostat for superconductor gravimeter[J]. Cryogenics & Superconductivity,2013,41(08):5−9
|
[54] |
党海政, 张涛, 赵帮健, 等. 以氦-4为唯一工质的1.8 K复合制冷机及其应用验证[J]. 科学通报,2022,67(09):896−905 (in chinese)
Dang H Z, Zhang T, Zhao B J, et al. A hybrid cryocooler achieving 1.8 K with He-4 as the only working medium and its application verification[J]. Chinese Science Bulletin,2022,67(09):896−905
|
[55] |
袁汉钦, 尹传林, 满长才. 2K温区复合制冷机发展[J]. 低温与超导,2022,50(12):81−85 (in chinese)
Yuan H Q, Yin C L, Man C C. Development of the hybrid cryocooler in 2K temperature range[J]. Cryogenics & Superconductivity,2022,50(12):81−85
|
[56] |
刘辉, 王晖, 陈顺中, 等. 用于量子电阻测量超导磁体及低温系统的研制[J]. 低温与超导,2022,50(02):1−4 (in chinese)
Liu H, Wang H, Chen S Z, et al. R&D of superconducting magnet and cryogenic system for quantum resistance measurement[J]. Cryogenics & Superconductivity,2022,50(02):1−4
|
[57] |
赋同量子科技(浙江)有限公司. 一种用于亚开尔文温区多点取冷的装置: CN202211675692.0[P]. 2023-04-04 (in chinese)
Futong Quantum Technology (Zhejiang) Co. , Ltd. A device for multi-point cooling in subkelvin temperature zone: CN202211675692.0[P]. 2023-04-04
|
[58] |
仪晟科学仪器(嘉兴)有限公司. 一种低温金刚石氮空位色心光学显微镜: CN202210354343.2[P]. 2022-07-29 (in chinese)
Yisheng Scientific Instruments (Jiaxing) Co. , Ltd. A low-temperature diamond nitrogen-vacancy color center optical microscope: CN202210354343.2[P]. 2022-07-29
|