[1] |
Blevin H A, Thonemann P C. Plasma confinement using an alternating magnetic field[R]. Abingdon, Berks: Culham Lab. , 1962
|
[2] |
Hugrass W N, Grimm R C. A numerical study of the generation of an azimuthal current in a plasma cylinder using a transverse rotating magnetic field[J]. Journal of Plasma Physics,1981,26(3):455−464 doi: 10.1017/S0022377800010849
|
[3] |
Jones I R. A review of rotating magnetic field current drive and the operation of the rotamak as a field-reversed configuration (Rotamak-FRC) and a spherical tokamak (Rotamak-ST)[J]. Physics of Plasmas,1999,6(5):1950−1957 doi: 10.1063/1.873452
|
[4] |
Milroy R D. A numerical study of rotating magnetic fields as a current drive for field reversed configurations[J]. Physics of Plasmas,1999,6(7):2771−2780 doi: 10.1063/1.873234
|
[5] |
Slough J, Kirtley D, Weber T. Pulsed plasmoid propulsion: the ELF thruster[C]//Proceedings of the 31st International Electric Propulsion Conference. 2009: 2009-265
|
[6] |
Weber T E, Slough J T, Kirtley D. The electrodeless Lorentz force (ELF) thruster experimental facility[J]. Review of Scientific Instruments,2012,83(11):113509 doi: 10.1063/1.4759000
|
[7] |
Miller S, Rovey J. Pulse discharge network development for a heavy gas field reversed configuration plasma device[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2010: 626
|
[8] |
Hill C S. Translation studies on an annular field reversed configuration device for space propulsion[D]. Houghton: Michigan Technological University, 2012
|
[9] |
Kirtley D, Pancotti A, Slough J, et al. Steady operation of an FRC thruster on Martian atmosphere and liquid water propellants[C]//Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta: AIAA, 2012: 4071
|
[10] |
Kirtley D, Slough J, Pfaff M, et al. Steady operation of an electromagnetic plasmoid thruster[C]//Proceedings of the 8th MSS/6th LPS/5th SPS Joint Subcommittee Meeting. 2011
|
[11] |
Brackbill J, Cambier J L, Gimelshein N E, et al. Numerical analysis of neutral entrainment effect on field-reversed configuration thruster efficiency[J]. Journal of Propulsion and Power,2014,30(6):1450−1458 doi: 10.2514/1.B35260
|
[12] |
Polzin K, Martin A, Little J, et al. State-of-the-art and advancement paths for inductive pulsed plasma thrusters[J]. Aerospace,2020,7(8):105 doi: 10.3390/aerospace7080105
|
[13] |
Waldock J, Kirtley D, Slough J. Electromagnetic optimization of FRC-based pulsed plasma thrusters[C]//Proceedings of the 33rd International Electric Propulsion Conference. Washington, 2013
|
[14] |
Pancotti A P, Little J M, Neuhoff J S, et al. Electrodeless Lorentz force (ELF) thruster for ISRU and sample return mission[C]//Proceedings of the 34th International Electric Propulsion Conference. Kobe-Hyogo, 2015: 4-10
|
[15] |
Koo J, Martin R, Sousa E M. High fidelity modeling of field reversed configuration (FRC) thrusters[R]. AFRL/RQRS, 2017
|
[16] |
Sercel C L, Gill T, Woods J M, et al. Performance measurements of a 5 kW-class rotating magnetic field thruster[C]//AIAA Propulsion and Energy 2021 Forum. AIAA, 2021
|
[17] |
Sercel C L, Woods J M, Gill T, et al. Impact of flux conservers on performance of inductively driven pulsed plasmoid thrusters[C]//Proceedings of the AIAA Propulsion and Energy 2020 Forum. AIAA, 2020: 3632
|
[18] |
Woods J M, Sercel C L, Gill T, et al. Performance measurements of a 60 kW field-reversed configuration thruster[C]//Proceedings of the AIAA Propulsion and Energy 2020 Forum. AIAA, 2020: 3633
|
[19] |
Uchigasaki D, Ohnishi N. Particle simulation of electrodeless plasma thruster with rotating magnetic field[C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. Grapevine: AIAA, 2017: 1343
|
[20] |
Sercel C L, Gill T, Woods J M, et al. Performance measurements of a 5 kW-Class rotating magnetic field thruster[C]//Proceedings of the AIAA Propulsion and Energy 2021 Forum. AIAA, 2021: 3384
|
[21] |
Shinohara S, Nishida H, Tanikawa T, et al. Development of electrodeless plasma thrusters with high-density helicon plasma sources[J]. IEEE Transactions on Plasma Science,2014,42(5):1245−1254 doi: 10.1109/TPS.2014.2313633
|
[22] |
Kuwahara D, Shinohara S, Yano K. Thrust characteristics of high-density helicon plasma using argon and xenon gases[J]. Journal of Propulsion and Power,2017,33(2):420−424 doi: 10.2514/1.B36199
|
[23] |
Kuwahara D, Shinohara S, Ishii T, et al. High-density helicon plasma thrusters using electrodeless acceleration schemes[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan,2016,14(ists30):Pb_117−Pb_121 doi: 10.2322/tastj.14.Pb_117
|
[24] |
Furukawa T, Kuwahara D, Shinohara S. Spatial characteristics of rotating magnetic field (RMF) plasma acceleration method in open magnetic field configuration under partial RMF penetration[J]. Physics of Plasmas,2021,28(7):073507 doi: 10.1063/5.0035383
|
[25] |
Gill T, Sercel C L, Woods J M, et al. Experimental characterization of efficiency modes in a rotating magnetic field thruster[C]//Proceedings of the AIAA SCITECH 2022 Forum. San Diego: AIAA, 2022: 2191
|
[26] |
Miller K E, Prager J, Henson A, et al. Continuously-operating repetitively-pulsed RMF-FRC thruster and power system[C]//Proceedings of 2021 IEEE International Conference on Plasma Science. Lake Tahoe: IEEE, 2021: 104-111
|
[27] |
Furukawa T, Shimura K, Kuwahara D, et al. Verification of azimuthal current generation employing a rotating magnetic field plasma acceleration method in an open magnetic field configuration[J]. Physics of Plasmas,2019,26(3):033505 doi: 10.1063/1.5064392
|
[28] |
Woods J M, Sercel C L, Gill T, et al. Equivalent circuit model for a rotating magnetic field thruster[C]//Proceedings of the AIAA Propulsion and Energy 2021 Forum. AIAA, 2021
|
[29] |
Cohen S A, Evans E S, David L, et al. Laboratory study of the PFRC-2’s initial plasma densification stages[J]. Physics of Plasmas,2023,30(10):102503 doi: 10.1063/5.0173346
|
[30] |
Furukawa T, Takizawa K, Kuwahara D, et al. Study on electromagnetic plasma propulsion using rotating magnetic field acceleration scheme[J]. Physics of Plasmas,2017,24(4):043505 doi: 10.1063/1.4979677
|
[31] |
Furukawa T, Takizawa K, Kuwahara D, et al. Electrodeless plasma acceleration system using rotating magnetic field method[J]. AIP Advances,2017,7(11):115204 doi: 10.1063/1.4998248
|
[32] |
Glasser A H, Cohen S A. Interpreting ion-energy distributions using charge exchange emitted from deeply kinetic field-reversed-configuration plasmas[J]. Physics of Plasmas,2022,29(5):052508 doi: 10.1063/5.0089430
|
[33] |
Furukawa T, Kuwahara D, Shinohara S. Ion flow velocimetry radio frequency plasma thruster using additional rotating magnetic field acceleration method[J]. 2022
|
[34] |
李忠林, 周成, 张越, 等. 无电极洛伦兹力推力器技术发展研究[J]. 空间控制技术与应用,2021,47(4):31−40(in chinese) doi: 10.3969/j.issn.1674-1579.2021.04.004
Li Z L, Zhou C, Zhang Y, et al. Development of electrodeless Lorentz force thruster[J]. Aerospace Control and Application,2021,47(4):31−40 doi: 10.3969/j.issn.1674-1579.2021.04.004
|
[35] |
孙新锋, 温晓东, 张天平, 等. 大功率射频场反构型等离子体电推进研究[J]. 火箭推进,2018,44(1):44−52(in chinese)
Sun X F, Wen X D, Zhang T P, et al. Research on high-power RF field reversed configuration plasma electromagnetic propulsion[J]. Journal of Rocket Propulsion,2018,44(1):44−52.
|
[36] |
刘莉娟, 温晓东, 孙新锋, 等. 大功率无电极高密度等离子体电磁推进概述[J]. 中国空间科学技术,2019,39(5):37−48(in chinese) doi: 10.16708/j.cnki.1000-758X.2019.0038
Liu L J, Wen X D, Sun X F, et al. High power electrodeless electromagnetic propulsion based on high density plasma: a review[J]. Chinese Space Science and Technology,2019,39(5):37−48 doi: 10.16708/j.cnki.1000-758X.2019.0038
|
[37] |
赵大年, 张天平, 孙新锋. 基于ISRU应用的电磁推进技术[J]. 真空与低温,2019,25(3):156−162(in chinese)
Zhao D N, Zhang T P, Sun X F. The research of ISRU-based electromagnetic propulsion technology[J]. Vacuum and Cryogenics,2019,25(3):156−162
|
[38] |
Sun X F, Jia Y H, Zhang T P, et al. The study of the RMF effect on the performance of field reversed configuration thruster[C]//Proceedings of the 35th International Electric Propulsion Conference. Atlanta: Georgia Institute of Technology, 2017
|