[1] Jimenez J, Henrist B, Hilleret N, et al. LHC and SPS electron cloud studies [J]. American Institute of Physics, 2005,773(1): 211-215
[2] Wang L, Blaskiewicz M, Wei J, et al. Mechanism of electron multipacting with a long-bunch proton beam[J]. Physcal Review E,2004,70:036501 doi: 10.1103/PhysRevE.70.036501
[3] Fischer W, Blaskiewicz M, Brennan J, et al. Electron cloud observations and cures in the relativistic heavy ion collider[J]. Physical Review Special Topics - Accelerators and Beams,2008,11(4):041002 doi: 10.1103/PhysRevSTAB.11.041002
[4] Wang J, Guo Z, Liu Y, et al. Electron cloud instability studies in the beijing electron positron collider[J]. Physical Review Special Topics - Accelerators and Beams,2004,7(9):094401 doi: 10.1103/PhysRevSTAB.7.094401
[5] Furman M. Electron Cloud Effects in Accelerators [C].Proceedings of ECLOUD'12, La Biodola, Isola d'Elba, Italy, 2012
[6] Pivi M, Furman M. Electron cloud development in the Proton Storage Ring and in the Spallation Neutron Source[J]. Physical Review Special Topics - Accelerators and Beams,2003,6(3):034201 doi: 10.1103/PhysRevSTAB.6.034201
[7] Suetsugu Y, Kanazawa K, Shibata K, et al. Design and construction of the SuperKEKB vacuum system[J]. Vacuum,2015,30(3):031602
[8] Suetsugu Y, Fukuma H, Ohmi K, et al. Mitigating the electron cloud effect in the SuperKEKB positron ring[J]. Physical Review Accelerators and Beams,2019,22(2):023201 doi: 10.1103/PhysRevAccelBeams.22.023201
[9] Baglin V, Bojko J, Grbner O, et al. The Secondary Electron Yield of Technical Materials and its Variation with Surface Treatments [C]. Proceedings of EPAC 2000, Vienna, Austria, 2000:217-221
[10] Suetsugu Y, Kanazawa K, Shibata K, et al. Continuing study on the photoelectron and secondary electron yield of TiN coating and NEG (Ti–Zr–V) coating under intense photon irradiation at the KEKB positron ring[J]. Nuclear Instruments & Methods in Physics Research,2006,556(2):399−409
[11] Costa P, Calatroni S, Neupert H, et al. Carbon coatings with low secondary electron yield[J]. Vacuum,2013,98:29−36 doi: 10.1016/j.vacuum.2013.03.001
[12] Henrist B, Hilleret N, Scheuerlein C, et al. The secondary electron yield of TiZr and TiZrV non-evaporable getter thin film coatings[J]. Applied Surface Science,2001,172(1-2):95−102 doi: 10.1016/S0169-4332(00)00838-2
[13] Suetsugu Y, Fukuma H, Shibata K, et al. Experimental Studies on Grooved Surfaces to Suppress Secondary Electron Emission [C]. Proceedings of IPAC'10, Kyoto, Japan, 2010
[14] Yang J, Cui W, Li Y, et al. Investigation of argon ion sputtering on the secondary electron emission from gold samples[J]. Applied Surface Science,2016,382:88−92 doi: 10.1016/j.apsusc.2016.03.060
[15] 蓝正龙, 田泽, 陈彦宾. 工业领域的激光清洗技术[J]. 激光与光电子学进展,2018,55(3):030005(in chinese) Lei Z, Tian Z, Chen Y. Laser Cleaning Technology in Industrial Fields[J]. Laser & Optoelectronics Progress,2018,55(3):030005
[16] Valizadeh R, Malyshev O, Wang S, et al. Low secondary electron yield engineered surface for electron cloud mitigation[J]. Applied Physics Letter,2014,105(23):231605 doi: 10.1063/1.4902993
[17] Salemme R, Baglin V, Calatroni S, et al. First beam test of Laser Engineered Surface Structures (LESS) at cryogenic temperature in CERN SPS accelerator [C]. Journal of Physics: Conference Series,2018,1067(8):082017
[18] Bellafont I, Morrone M, Mether L, et al. Design of the future circular hadron collider beam vacuum chamber[J]. Physical Review Accelerators and Beams,2020,23(3):033201 doi: 10.1103/PhysRevAccelBeams.23.033201
[19] Brown M, Diaz L, Aslan A, et al. Carbon-oxygen surface formation enhances secondary electron yield in Cu, Ag and Au[J]. Scientific Reports,2022,12:15808 doi: 10.1038/s41598-022-19924-9