[1] |
Lev D R, Mikellides I G, Pedrini D, et al. Recent progress in research and development of hollow cathodes for electric propulsion[J]. Reviews of Modern Plasma Physics,2019,3(1):6 doi: 10.1007/s41614-019-0026-0
|
[2] |
贾艳辉, 张天平. 空间用六硼化镧空心阴极最新研究进展及发展趋势[J]. 真空科学与技术学报,2016,36(6):690−698 (in chinese)
Jia Y H, Zhang T P. Latest development of space-borne LaB6 hollow cathode[J]. Chinese Journal of Vacuum Science and Technology,2016,36(6):690−698
|
[3] |
Drobny C, Wulfkühler J P, Wätzig K, et al. Detailed work function measurements and development of a hollow cathode using the emitter material C12A7 electride[C]//Proceedings of Space Propulsion Conference, Sevilla, 2018: 14-18
|
[4] |
Kirkwood D M, Gross S J, Balk T J, et al. Frontiers in thermionic cathode research[J]. IEEE Transactions on Electron Devices,2018,65(6):2061−2071 doi: 10.1109/TED.2018.2804484
|
[5] |
Gärtner G, Geittner P, Lydtin H, et al. Emission properties of top-layer scandate cathodes prepared by LAD[J]. Applied Surface Science,1997,111:11−17 doi: 10.1016/S0169-4332(96)00698-8
|
[6] |
Parakhin G A, Pobbubniy R S, Nesterenko A N, et al. Low-current cathode with a BaO based thermoemitter[J]. Procedia Engineering,2017,185:80−84 doi: 10.1016/j.proeng.2017.03.295
|
[7] |
Rudwan I M A, Wallace N C, Coletti M, et al. Emitter depletion measurement and modeling in the T5&T6 Kaufman-type ion thrusters[C]//Proceedings of the 30th International Electric Propulsion Conference, Florence, 2007
|
[8] |
Polk J E, Goebel D M, Tighe W. XIPS© 25-cm thruster cathode life qualification for use on deep space missions[C]//Proceedings of the 30th International Electric Propulsion Conference, Florence, 2007: 2007-193
|
[9] |
Murashko V M, Koryakin A, Nesterenko A N, et al. Russian flight Hall thrusters SPT-70 & SPT-100 after cathode change start during 20-25 ms[C]//Proceedings of the 30th International Electric Propulsion Conference, Florence, 2007
|
[10] |
Koch N, Harmann H P, Kornfeld G. Status of the THALES tungsten/osmium mixed-metal hollow cathode neutralizer development[C]//Proceedings of the 30th International Electric Propulsion Conference, Florence, 2007
|
[11] |
郭宁, 唐福俊, 李文峰. 空间用空心阴极研究进展[J]. 推进技术,2012,33(1):155−160 (in chinese) doi: 10.13675/j.cnki.tjjs.2012.01.025
Guo N, Tang F J, Li W F. Advances in spaceborne hollow cathode[J]. Journal of Propulsion Technology,2012,33(1):155−160 doi: 10.13675/j.cnki.tjjs.2012.01.025
|
[12] |
Coletti M, Gabriel S B. Barium oxide depletion from hollow-cathode inserts: modeling and comparison with experiments[J]. Journal of Propulsion and Power,2010,26(2):364−369 doi: 10.2514/1.41345
|
[13] |
Polk J, Brinza D, Kakuda R, et al. Demonstration of the NSTAR ion propulsion system on the deep space one mission[C]//Proceedings of the 27th International Electric Propulsion Conference, Pasadena, 2001
|
[14] |
Polk J, Anderson J, Brophy J, et al. An overview of the results from an 8200 hour wear test of the NSTAR ion thruster[C]//Proceedings of the 35th Joint Propulsion Conference, Los Angeles: AIAA, 1999
|
[15] |
Polk J E, Mikellides I G, Capece A M, et al. Barium depletion in hollow cathode emitters[J]. Journal of Applied Physics,2016,119(2):023303 doi: 10.1063/1.4938489
|
[16] |
Capece A M, Polk J E, Shepherd J E. Decoupling the thermal and plasma effects on the operation of a xenon hollow cathode with oxygen poisoning gas[J]. IEEE Transactions on Plasma Science,2015,43(9):3249−3255 doi: 10.1109/TPS.2015.2465845
|
[17] |
Cronin J L. Modern dispenser cathodes[J]. IEE Proceedings,1981,128(1):19−32 doi: 10.1049/ip-d.1981.0004
|
[18] |
Haas G A, Thomas R E, Marrian C R K, et al. Rapid turn-on of shelf-stored tubes: an update[J]. IEEE Transactions on Electron Devices,1991,38(10):2244−2251 doi: 10.1109/16.88506
|
[19] |
Benavides G F, Kamhawi H, Mackey J, et al. Iodine Hall-effect electric propulsion system research, development, and system durability demonstration[C]//Proceedings of 2018 Joint Propulsion Conference, Cincinnati: AIAA, 2018: 4422
|
[20] |
Szabo J, Pote B, Paintal S, et al. Performance evaluation of an iodine-vapor Hall thruster[J]. Journal of Propulsion and Power,2012,28(4):848−857 doi: 10.2514/1.B34291
|
[21] |
Szabo J J, Robin M, Paintal S, et al. Iodine propellant space propulsion[C]//Proceedings of the 33rd International Electric Propulsion Conference, Washington: The George Washington University, 2013: 311
|
[22] |
Tsay M, Frongillo J, Zwahlen J, et al. Maturation of iodine fueled BIT-3 RF ion thruster and RF neutralizer[C]//Proceedings of the 52nd AIAA/SAE/ASEEJoint Propulsion Conference, Salt Lake City: AIAA, 2016: 4544
|
[23] |
Taillefer Z R, Blandino J J, Szabo J. Characterization of a barium oxide cathode operating on xenon and iodine propellants[J]. Journal of Propulsion and Power,2020,36(4):575−585 doi: 10.2514/1.B37315
|
[24] |
Lafferty J M. Boride cathodes[J]. Journal of Applied Physics,1951,22(3):299−309 doi: 10.1063/1.1699946
|
[25] |
刘洪亮, 张忻, 王杨, 等. 单晶LaB6阴极材料典型晶面的电子结构和发射性能研究[J]. 物理学报,2018,67(4):048101 (in chinese) doi: 10.7498/aps.67.20172187
Liu H L, Zhang X, Wang Y, et al. Surface electronic structures and emission property of single crystal LaB6 typical surfaces[J]. Acta Physica Sinica,2018,67(4):048101 doi: 10.7498/aps.67.20172187
|
[26] |
Zhou S L, Zhang J X, Liu D M, et al. Synthesis and properties of nanostructured dense LaB6 cathodes by arc plasma and reactive spark plasma sintering[J]. Acta Materialia,2010,58(15):4978−4985 doi: 10.1016/j.actamat.2010.05.031
|
[27] |
Late D J, More M A, Joag D S, et al. Field emission studies on well adhered pulsed laser deposited LaB6 on W tip[J]. Applied Physics Letters,2006,89(12):123510 doi: 10.1063/1.2337999
|
[28] |
Swanson L W, McNeely D R. Work functions of the (001) face of the hexaborides of Ba, La, Ce and Sm[J]. Surface Science,1979,83(1):11−28 doi: 10.1016/0039-6028(79)90477-1
|
[29] |
Monnier R, Delley B. Properties of LaB6 elucidated by density functional theory[J]. Physical Review B,2004,70(19):193403 doi: 10.1103/PhysRevB.70.193403
|
[30] |
Late D J, Singh V R, Sinha S, et al. Synthesis of LaB6 micro/nano structures using picosecond (Nd: YAG) laser and its field emission investigations[J]. Applied Physics A,2009,97(4):905−909 doi: 10.1007/s00339-009-5357-1
|
[31] |
Hohn F J, Chang T, Broers A N. Emission behavior and brightness of single-crystal LaB6 cathode materials[J]. Journal of the Electrochemical Society, 1980, 127(3): C103-C104
|
[32] |
Arkhopov B A, Kozubsky K N. The development of the cathode compensators for stationary plasma thrusters in the USSR[C]//Proceedings of the 22nd International Electric Propulsion Conference, Viareggio, 1991: 14-17
|
[33] |
Kim V, Popov G, Arkhipov B, et al. Electric propulsion activity in Russia[C]//Proceedings of the 27th International Electric Propulsion Conference, Pasadena, 2001: 5
|
[34] |
Goebel D M, Watkins R M, Jameson K K. LaB6 hollow cathodes for ion and Hall thrusters[J]. Journal of Propulsion and Power,2007,23(3):552−558 doi: 10.2514/1.25475
|
[35] |
Goebel D M, Polk J E. Lanthanum hexaboride hollow cathode for the asteroid redirect robotic mission 12.5 kW Hall thruster[R]. 2015
|
[36] |
Goebel D M, Watkins R M. Compact lanthanum hexaboride hollow cathode[J]. Review of Scientific Instruments,2010,81(8):083504 doi: 10.1063/1.3474921
|
[37] |
Becatti G, Conversano R W, Goebel D M. Demonstration of 25, 000 ignitions on a proto-flight compact heaterless lanthanum hexaboride hollow cathode[J]. Acta Astronautica,2021,178:181−191 doi: 10.1016/j.actaastro.2020.09.013
|
[38] |
Goebel D M, Chu E. High-current lanthanum hexaboride hollow cathode for high-power Hall thrusters[J]. Journal of Propulsion and Power,2014,30(1):35−40 doi: 10.2514/1.B34870
|
[39] |
Goebel D M, Katz I. Fundamentals of electric propulsion: ion and Hall thrusters[M]. Hoboken: Wiley, 2008
|
[40] |
Chu E, Goebel D M. High-current lanthanum hexaboride hollow cathode for 10-to-50-kW Hall thrusters[J]. IEEE Transactions on Plasma Science,2012,40(9):2133−2144 doi: 10.1109/TPS.2012.2206832
|
[41] |
郭宁, 江豪成, 顾佐. 离子发动机空心阴极寿命预测[J]. 真空,2009,46(4):83−85 (in chinese) doi: 10.13385/j.cnki.vacuum.2009.04.025
Guo N, Jiang H C, Gu Z. Lifetime forecast of hollow cathode for ion engine[J]. Vacuum,2009,46(4):83−85 doi: 10.13385/j.cnki.vacuum.2009.04.025
|
[42] |
Kokal U, Turan N, Celik M. Thermal analysis and testing of different designs of LaB6 hollow cathodes to Be used in electric propulsion applications[J]. Aerospace,2021,8(8):215 doi: 10.3390/aerospace8080215
|
[43] |
Yamaguchi H, Yusa R, Wang G X, et al. Work function lowering of LaB6 by monolayer hexagonal boron nitride coating for improved photo- and thermionic-cathodes[J]. Applied Physics Letters,2023,122(14):141901 doi: 10.1063/5.0142591
|
[44] |
Kubota K, Oshio Y, Watanabe H, et al. Numerical and experimental study on discharge characteristics of high-current hollow cathode[C]//Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City: AIAA, 2016: 4628
|
[45] |
Ning Z X, Zhang H G, Zhu X M, et al. 10000-ignition-cycle investigation of a LaB6 hollow cathode for 3-5-kilowatt Hall thruster[J]. Journal of Propulsion and Power,2019,35(1):87−93 doi: 10.2514/1.B37192
|
[46] |
Ning S Y, Iitaka T, Yang X Y, et al. Enhanced thermionic emission performance of LaB6 by Ce doping[J]. Journal of Alloys and Compounds,2018,760:1−5 doi: 10.1016/j.jallcom.2018.05.154
|
[47] |
Kerrour W, Kabir A, Schmerber G, et al. Characterization of C12A7 thin films deposited by spray pyrolysis[J]. Journal of Materials Science:Materials in Electronics,2016,27(10):10106−10112 doi: 10.1007/s10854-016-5085-1
|
[48] |
Kurashige K, Toda Y, Matstuishi S, et al. Czochralski growth of 12CaO·7Al2O3 crystals[J]. Crystal Growth & Design,2006,6(7):1602−1605
|
[49] |
Kim S W, Matsuishi S, Nomura T, et al. Metallic state in a lime− alumina compound with nanoporous structure[J]. Nano Letters,2007,7(5):1138−1143 doi: 10.1021/nl062717b
|
[50] |
Kiyanagi R, Richardson Jr J W, Sakamoto N, et al. Free oxygen ions and cage deformation in the nanoporous material 12CaO·7Al2O3: a temperature-dependent neutron powder diffraction study[J]. Solid State Ionics,2008,179(40):2365−2371 doi: 10.1016/j.ssi.2008.09.026
|
[51] |
Hayashi K, Matsuishi S, Kamiya T, et al. Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor[J]. Nature,2002,419(6906):462−465 doi: 10.1038/nature01053
|
[52] |
Watanabe S, Watanabe T, Ito K, et al. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications[J]. Science and Technology of Advanced Materials,2011,12(3):034410 doi: 10.1088/1468-6996/12/3/034410
|
[53] |
Sushko P V, Muñoz Ramo D, Shluger A L. Electronic structure and spectroscopic properties of interstitial anions in the nanoporous complex oxide 12CaO·7Al2O3[J]. Physica Status Solidi (A),2007,204(3):663−669 doi: 10.1002/pssa.200673845
|
[54] |
Park J K, Shimomura T, Yamanaka M, et al. Behavior of oxygen bubbles during crystal growth of Ca12Al14O33 by floating method in magnetic field[J]. Crystal Research and Technology,2005,40(4-5):329−333 doi: 10.1002/crat.200410346
|
[55] |
Kim S W, Miyakawa M, Hirano M, et al. Superconducting transition in electron-doped 12CaO·7Al2O3[J]. Materials Transactions,2008,49(8):1748−1752 doi: 10.2320/matertrans.MBW200717
|
[56] |
Kim S W, Hayashi K, Hirano M, et al. Electron carrier generation in a refractory oxide 12CaO·7Al2O3 by heating in reducing atmosphere: conversion from an insulator to a persistent conductor[J]. Journal of the American Ceramic Society,2006,89(10):3294−3298 doi: 10.1111/j.1551-2916.2006.01213.x
|
[57] |
陈洁, 张忻, 刘洪亮, 等. 七铝酸十二钙电子化合物研究进展[J]. 材料导报,2020,34(13):13076−13083 (in chinese) doi: 10.11896/cldb.19050051
Chen J, Zhang X, Liu H L, et al. Advances in the study of C12A7: e-electride[J]. Materials Reports,2020,34(13):13076−13083 doi: 10.11896/cldb.19050051
|
[58] |
Rand L P, Williams J D. A calcium aluminate electride hollow cathode[J]. IEEE Transactions on Plasma Science,2015,43(1):190−194 doi: 10.1109/TPS.2014.2338737
|
[59] |
Rand L P, Williams J D. Instant start electride hollow cathode[C]//Proceedings of the 33rd International Electric Propulsion Conference, Washington: The George Washington University, 2013: 11
|
[60] |
McDonald M S, Caruso N R S. Ignition and early operating characteristics of a low-current C12A7 hollow cathode[C]//Proceedings of the 35th International Electric Propulsion Conference, Atlanta, 2017: 8-12
|
[61] |
Drobny C, Wulfkühler J P, Tajmar M. Development of a C12A7 electride hollow cathode and joint operation with a plasma thruster[C]//Proceedings of the 36th International Electric Propulsion Conference, Vienna: University of Vienna, 2019
|
[62] |
Drobny C, Wulfkühler J P, Wätzig K, et al. Endurance test of a hollow cathode using the emitter material C12A7 electride[R]. 2020
|
[63] |
Toledo J, Plaza J F, Post A, et al. Performance comparison of LaB6 and C12A7: e-emitters for space electric propulsion cathodes[J]. IOP Conference Series:Materials Science and Engineering,2022,1226:012093 doi: 10.1088/1757-899X/1226/1/012093
|
[64] |
Hua Z W, Wang P Y, Luo Z, et al. An experimental study on the degradation of the C12A7 hollow cathode[J]. Plasma Science and Technology,2022,24(7):074010 doi: 10.1088/2058-6272/ac5c26
|
[65] |
Hua Z W, Wang P Y, Xu Z Q, et al. Experimental characterization of the C12A7 hollow cathode and its joint operation with a low-power Hall thruster[J]. Vacuum,2021,192:110443 doi: 10.1016/j.vacuum.2021.110443
|
[66] |
华志伟, 叶展雯, 王平阳. C12A7空心阴极发射体的失效研究[J]. 推进技术,2022,43(11):478−484 (in chinese)
Hua Z W, Ye Z W, Wang P Y. Failure emitters of C12A7 hollow cathode[J]. Journal of Propulsion Technology,2022,43(11):478−484
|