[1] |
Provenzano V, Holtz R. Nanocomposites for high temperature applications[J]. Materials Science and Engineering:a,1995,204(1):125−134
|
[2] |
Park J, Yoon B, Park C, et al. Sensing behavior and mechanism of mixed potential NO, sensors using NiO, Nio( Plus YSZ) and CuO oxide electrodes[J]. Sensors and Actuators B-chemical,2009,135(2):516−523 doi: 10.1016/j.snb.2008.10.006
|
[3] |
Diao Q, Yin C, Guan Y, et al. The Effects of Sintering Temperature of MnCr2O4 Nanocomposite on the NO2 Sensing Property for Ysz-based Potentiometric Sensor[J]. Sensors and Actuators B-chemical,2013,177:397−403 doi: 10.1016/j.snb.2012.11.040
|
[4] |
Yu H, Song Z, Liu Q, et al. Colloidal Synthesis of Tungsten Oxide Quantum Dots for Sensitive and Selective H2S Gas Detection[J]. Sensors and Actuators B-chemical,2017,248:1029−1036 doi: 10.1016/j.snb.2017.03.044
|
[5] |
Kruefu V, Wisitsoraat A, Tuantranont A, et al. Ultra-sensitive H2S sensors based on hydrothermal/impregnation-made Ru-functionalized WO3 nanorods[J]. Sensors and Actuators B-chemical,2015,215(Brescia,ITALY):630−636
|
[6] |
Yin C, Guan Y, Zhu Z, et al. Highly Sensitive Mixed-potential-type NO2 Sensor Using Porous Double-layer Ysz Substrate[J]. Sensors and Actuators B-chemical,2013,183:474−477 doi: 10.1016/j.snb.2013.03.064
|
[7] |
Zhi M, Koneru A, Yang F, et al. Electrospun La0.8Sr0.2MnO3 ofibers for a high-temperature electrochemical Carbon Monoxide Sensor[J]. Nanotechnology, 2012, 23(30)
|
[8] |
Hao X, Ma C, Yang X, et al. Ysz-based Mixed Potential H2S Sensor Using La2NiO4 Sensing Electrode[J]. Sensors and Actuators B-chemical,2018,255:3033−3039 doi: 10.1016/j.snb.2017.09.127
|
[9] |
Hao X, Wang B, Ma C, et al. Mixed Potential Type Sensor Based on Stabilized Zirconia and Co1-xZnx Fe2O4 Sensing Electrode for Detection of Acetone[J]. Sensors and Actuators B-chemical,2018,255:1173−1181 doi: 10.1016/j.snb.2017.06.002
|
[10] |
Deng Y, Chen W, Li B, et al. Physical Vapor Deposition Technology for Coated Cutting Tools: a Review[J]. Ceramics International,2020,46(11):18373−18390 doi: 10.1016/j.ceramint.2020.04.168
|
[11] |
Verma M, Singh K, Kumar A, et al. Reactive Magnetron Sputtering Based Synthesis of WO3 Nanoparticles and Their Use for the Photocatalytic Degradation of Dyes[J]. Solid State Sciences, 2020, 99
|
[12] |
Rusli N, Muhammad R, Ghoshal S, et al. Annealing Temperature Induced Improved Crystallinity of Ysz Thin Film[J]. Materials Research Express, 2020, 7(5)
|
[13] |
Liu H, Xu Y, Zhang X, et al. Influence of Structural Orientation of Tungsten Oxide Films on Gas Sensing Properties[J]. Sensors and Actuators A-physical, 2023, 349
|
[14] |
Harshulkhan S M, Janaki K, Velraj G, et al. Effect of Ag doping on structural, optical and photocatalytic activity of tungsten oxide (WO3) nanoparticles[J]. Journal of Materials Science-Materials in Electronics,2016,27(5):4744−4751
|
[15] |
Xia Z, Wang H, Su Y, et al. Enhanced Electrochromic Properties By Improvement of Crystallinity for Sputtered WO3 Film[J]. Coatings, 2020, 10(6)
|
[16] |
Cong S, Yuan Y, Chen Z, et al. Noble Metal-comparable Sers Enhancement From Semiconducting Metal Oxides By Making Oxygen Vacancies[J]. Nature Communications, 2015, 6
|
[17] |
Zhang N, Li X, Ye H, et al. Oxide Defect Engineering Enables to Couple Solar Energy Into Oxygen Activation[J]. Journal of the American Chemical Society,2016,138(28):8928−8935 doi: 10.1021/jacs.6b04629
|
[18] |
Khudadad A, Yousif A, Abed H, et al. Effect of Heat Treatment on WO3 Nanostructures Based NO2 Gas Sensor Low-cost Device[J]. Materials Chemistry and Physics, 2021, 269
|
[19] |
Rao S, Parne S, Nagaraju P, et al. Synthesis and Characterization of Spray Deposited Nanostructured WO3 Thin Films for Ammonia Sensing Applications[J]. Inorganic Chemistry Communications, 2022, 144
|