[1] |
Yu X, Marks T J, Facchetti A. Metal oxides for optoelectronic applications[J]. Nature Materials,2016,15(4):383−396 doi: 10.1038/nmat4599
|
[2] |
兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展[J]. 物理学报,2016,65(12):128504(in chinese) doi: 10.7498/aps.65.128504
Lan L F, Zhang P, Peng J B. Research progress on oxide-based thin film transistors[J]. Acta Physica Sinica,2016,65(12):128504 doi: 10.7498/aps.65.128504
|
[3] |
Chen Y F, Geng D, Jang J. Integrated active-matrix capacitive sensor using a-IGZO TFTs for AMOLED[J]. IEEE Journal of the Electron Devices Society,2018,6:214−218 doi: 10.1109/JEDS.2018.2790954
|
[4] |
Zhang Y C, He G, Wang L N, et al. Ultraviolet-assisted low-thermal-budget-driven a-InGaZnO thin films for high-performance transistors and logic circuits[J]. ACS Nano,2022,16(3):4961−4971 doi: 10.1021/acsnano.2c01286
|
[5] |
Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances[J]. Advanced Materials,2012,24(22):2945−2986 doi: 10.1002/adma.201103228
|
[6] |
Shim G W, Hong W, Cha J H, et al. TFT channel materials for display applications: from amorphous silicon to transition metal dichalcogenides[J]. Advanced Materials,2020,32(35):1907166 doi: 10.1002/adma.201907166
|
[7] |
荆斌, 徐萌, 彭聪等. 高负偏光照稳定性的溶液法像素级IZTO TFT[J]. 物理学报,2022,71(13):138502(in chinese) doi: 10.7498/aps.71.20220154
Jing B, Xu M, Peng C, et al. Sol-gel indium zinc tin oxide thin film transistor pixel array with superior stability under negative bias illumination stress[J]. Acta Physica Sinica,2022,71(13):138502 doi: 10.7498/aps.71.20220154
|
[8] |
康皓清, 傅若凡, 杨建文, 等. 非晶铟锌钨氧化物薄膜晶体管的电学性能和稳定性研究[J]. 真空科学与技术学报,2018,38(9):772−778(in chinese) doi: 10.13922/j.cnki.cjovst.2018.09.06
Kang H Q, Fu R F, Yang J W, et al. Performance and stability of thin film transistors made of amorphous indium zinc tungsten oxides[J]. Chinese Journal of Vacuum Science and Technology,2018,38(9):772−778 doi: 10.13922/j.cnki.cjovst.2018.09.06
|
[9] |
Ding X W, Yang B, Xu H Y, et al. Low-temperature fabrication of IZO thin film for flexible transistors[J]. Nanomaterials,2021,11(10):2552−2561 doi: 10.3390/nano11102552
|
[10] |
Zhao M J, Zhang Z W, Xu Y C, et al. High-performance back-channel-etched thin-film Transistors with an InGaO/InZnO stacked channel[J]. Physica Status Solidi a, 2020, 217: 1900773
|
[11] |
Bussell B C, Gibson P N, Lawton J, et al. The effect of RF plasma power on remote plasma sputtered AZO thin films[J]. Surface & Coatings Technology,2022,442:128402
|
[12] |
Shan F, Yoo S, Lee J Y, et al. Analysis of electronic characteristics of plasma-enhanced indium zinc oxide thin film transistors[J]. Journal of Electrical Engineering & Technology,2023,18:509−514
|
[13] |
Yang W G, Yang H, Su J B, et al. Preparation and electrical properties of Ni-doped InZnO thin film transistors[J]. Materials Science in Semiconductor Processing,2023,153:107147 doi: 10.1016/j.mssp.2022.107147
|
[14] |
Cho S I, Woo N, Jeong H J, et al. Inserting interfacial layer for atomic-scaled hydrogen control to enhance electrical properties of InZnO TFTs[J]. IEEE Electron Device Letters,2023,44(4):650−653 doi: 10.1109/LED.2023.3250439
|
[15] |
Park J S, Maeng W J, Kim H S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices[J]. Thin Solid Films,2011,520(6):1679−1693
|
[16] |
Ide K, Nomura K, Hosono H, et al. Electronic defects in amorphous oxide semiconductors: a review[J]. Physica Status Solidi (a),2019,216(5):1800372 doi: 10.1002/pssa.201800372
|
[17] |
Liang L Y, Zhang H B, Li T, et al. Addressing the conflict between mobility and stability in oxide thin-film transistors[J]. Advanced Science,2023,10:2300373 doi: 10.1002/advs.202300373
|
[18] |
Abliz A, Xu L, Wan D, et al. Effects of yttrium doping on the electrical performances and stability of ZnO thin-film transistors[J]. Applied Surface Science,2019,475:565−570 doi: 10.1016/j.apsusc.2018.12.236
|
[19] |
Abliz A, Wan D, Yang L Y, et al. Investigation on the electrical performances and stability of W-doped ZnO thin-film transistors[J]. Materials Science in Semiconductor Processing,2019,95:54−58 doi: 10.1016/j.mssp.2019.01.027
|
[20] |
Lu K K, Yao R H, Wang Y P, et al. Effects of praseodymium doping on the electrical properties and aging effect of InZnO thin-film transistor[J]. Journal of Materials Science,2019,54(24):14778−14786 doi: 10.1007/s10853-019-03941-7
|
[21] |
Liu Y Y, Zhao J F, Li Y H, et al. Fabrication and characterization of In2O3-SnO2-ZnO thin film transistor[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(4): 391-396(刘媛媛, 赵继凤, 李延辉, 等. 溅射气压对铟锡氧化物薄膜晶体管性能的影响[J]. 真空科学与技术学报, 2016, 36(4): 391-396
in Chinese)
|
[22] |
Abliz A, Rusul A, Duan H M, et al. Investigation of the electrical properties and stability of HfInZnO thin-film transistors[J]. Chinese Journal of Physics,2020,68:788−795 doi: 10.1016/j.cjph.2020.09.034
|
[23] |
He J W, Li G L, Lv Y W, et al. Defect self-compensation for high-mobility bilayer InGaZnO/In2O3 thin-film transistor[J]. Advanced Electronic Materials,2019,5(6):1900125 doi: 10.1002/aelm.201900125
|
[24] |
张鹤, 王耀功, 王若铮, 等. 快速热处理方法对铟镓锌氧化物薄膜晶体管特性的改善[J]. 真空科学与技术学报,2020,40(3):214−219(in chinese) doi: 10.13922/j.cnki.cjovst.2020.03.06
Zhang H, Wang Y G, Wang R Z, et al. Characteristics improvement of In-Ga-Zn oxide thin film transistors by rapid post annealing[J]. Chinese Journal of Vacuum Science and Technology,2020,40(3):214−219 doi: 10.13922/j.cnki.cjovst.2020.03.06
|
[25] |
Su J B, Wang Y, Ma Y B, et al. Preparation and electrical characteristics of N-doped In-Zn-Sn-O thin film transistors by radio frequency magnetron sputtering[J]. Journal of Alloys and Compounds,2018,750:1003−1006 doi: 10.1016/j.jallcom.2018.04.058
|