[1] |
Liu Y, Taylor L. Characterization of lunar dust and asynopsis of available lunar simulant[J]. Planetary and Space Science,2011,59:1769−1783 doi: 10.1016/j.pss.2010.11.007
|
[2] |
Lawrence A T, Harrison H S, Carrier W D, et al. The lunar dust problem: from liability to asset[R]. American Institute of Aeronautics and Astronautics, USA, 2005, 1-8
|
[3] |
Taylor G J, Stephen M, James G. Report of the space resources roundtable VII: LEAG conference on lunar exploration[C]. Lunar Exploration Strategic Roadmap Meeting, 2005, 1-130
|
[4] |
张森森, 王世杰, 李雄耀, 等. 月尘的性质及危害评述[J]. 地球科学(中国地质大学学报),2013,38(02):339−350(in chinese) doi: 10.3799/dqkx.2013.033
Zhang S S, Wang S J, Li X Y, et al. Properties and harmfulness of lunar dust: A review[J]. Earth Science-Journal of China University of Geosciences,2013,38(02):339−350 doi: 10.3799/dqkx.2013.033
|
[5] |
姚日剑, 王先荣, 王鹢. 月球粉尘的研究现状[J]. 航天器环境工程,2008,25(06):512−515+497(in chinese)
Yao R J, Wang X R, Wang Y. A review on lunar dust researches[J]. Spacecraft Environment Engineering,2008,25(06):512−515+497
|
[6] |
Walton O R. Adhesion of lunar dust[R]. NASA, USA, 2007, NASA/CR-214685, 1-41
|
[7] |
Timothy J S, Richard R V, William M F. Impact of dust on lunar exploration[R]. NASA, USA, 2007, 1-4
|
[8] |
张小平, 甘红, 李存惠, 等. 月尘运动与生物毒性研究进展[J]. 地球与行星物理论评,2021,52(5):495−506(in chinese)
Zhang X P, Gan H, Li C H, et al. Recent progress in lunar dust migration and biological tox-icity research[J]. Reviews of Geophysics and Planetary Physics,2021,52(5):495−506
|
[9] |
Agui J H, Stocker P. NASA lunar dust filtration and separations workshop report[R]. NASA, USA, 2009, TM-215821, 1-28
|
[10] |
Sandra A W, The Apollo experience lessons learned for constellation lunar dust management[R], NASA, USA,2006, TP-213726, 1−73
|
[11] |
Stubbs T J, Vondrak R R, Farrell W M. A dynamic fountain model for lunar dust[J]. Advances in Space Research,2006,37(1):59−66 doi: 10.1016/J.ASR.2005.04.048
|
[12] |
Weinhold M S, Levine J S. Increased concentrations of lunar dust associated with a denser lunar atmosphere resulting from heightened human presence and activity on the moon[R]. NASA, USA, 2020, 1-2
|
[13] |
Kristen J, Michael J, Angela G, et al. Dust mitigation: impacts & opportunities for science on the lunar south pole[C].NASA Lunar Surface Science Workshop, 2020, 1-17
|
[14] |
曹红杏, 阮萍, 李婷, 等. 光学系统的月尘防护方法综述[J]. 科学技术与工程,2007,7(20):5310−5315(in chinese)
Cao H X, Ruan P, Li T, et al. Summary of lunar dust removal methods for optical system[J]. Science Technology and Engineering,2007,7(20):5310−5315
|
[15] |
Afshar M N, Wu C Y, Curtis J, et al. Review of dust transport and mitigation technologies in lunar and martian atmospheres[J]. Advances in Space Research,2015,56(6):1222−1241 doi: 10.1016/j.asr.2015.06.007
|
[16] |
Johansen M R. An update on NASA’s lunar dust mitigation strategy[R]. NASA, USA, 2020, 1-2
|
[17] |
曾令斌, 邱宝贵, 肖杰, 等. 月面扬尘特性与月尘防护技术研究[J]. 上海航天,2015,32(01):58−62+72(in chinese)
Zeng L B, Qiu B G, Xiao J, et al. Study on characteristics of lunar dust and dust mitigation technologies[J]. Aerospace Shanghai,2015,32(01):58−62+72
|
[18] |
Aliberti J. Design of a device to remove lunar dust from space suits for the proposed lunar base[D]. NASA,USA, 1990, CR-186679, 1-117
|
[19] |
Wilson T L, Wilson K B. Regolith sintering: a solution to lunar dust mitigation?[J]. NASA Lunar and Planetary Science,2005:1422−1423
|
[20] |
Calle C I , Mackey P J, Hogue M D, et al. Electrodynamic dust shields on the international space station: Exposure to the space environment[J]. Journal of Electrostatics, 2013, 71: 257-259
|
[21] |
Kawamoto H, Uchiyama M, Cooper B L, et al. Mitigation of lunar dust on solar panels and optical elements utilizing electrostatic traveling-wave[J]. Journal of Electrostatics,2011,69:370−379. doi: 10.1016/j.elstat.2011.04.016
|
[22] |
Hickman N S, McFall J, Nason S, et al. Optimization of the photovoltaic powered systems with dust mitigation technology for future lunar and martian missions[C]. 38th IEEE Photovoltaic Specialists Conference (PVSC), 2012, 2815-2818
|
[23] |
Kawamoto H, Miwa T. Mitigation of lunar dust adhered to mechanical parts of equipment used for lunar exploration[J]. Journal of Electrostatics,2011,69:365−369
|
[24] |
孙旗霞, 杨宁宁, 蔡小兵, 等. 基于交变电场的月表除尘方法研究进展[J]. 力学进展,2012,42(6):785−803(in chinese)
Sun Q X, Yang N N, Cai X B, et al. Advance in lunar surface dust removal method by electrodynamic field[J]. Advances in Mechanics,2012,42(6):785−803
|
[25] |
Jiang J, Lu Y F, Zhao H Y, et al. Experiments on dust removal performance of a novel PLZT driven lunar dust mitigation technique[J]. Acta Astronautica,2019,165:17−24 doi: 10.1016/j.actaastro.2019.08.023
|
[26] |
Jiang J, Lu Y F, Yan X T, et al. An optimization dust-removing electrode design method aiming at improving dust mitigation efficiency in lunar exploration[J]. Acta Astronautica,2020,166:59−68 doi: 10.1016/j.actaastro.2019.10.004
|
[27] |
Afshar M N, Damit B, Wu C Y. Efficiency evaluation of an electrostatic lunar dust collector[C]. AIAA 41st International Conference on Environmental Systems (ICES), 2011, 5201:1-14
|
[28] |
Afshar M N, Wu C Y, Sorloaic H N. Efficiency determination of an electrostatic lunar dust collector by discrete element method[J]. J. Appl. Phys.,2012,112(2):023305−023309 doi: 10.1063/1.4739734
|
[29] |
Afshar M N, Thakker Y, Wu C Y. Influence of back electrostatic field on the collection efficiency of an electrostatic lunar dust collector[J]. Aerosol Air Qual. Res.,2014,14:1333−1343 doi: 10.4209/aaqr.2013.12.0353
|
[30] |
Afshar M N, Wu C Y, Sorloaica H N. Electrostatic collection of tribocharged lunar dust simulants[J]. Adv. Powder Technol.,2014,25(6):1800−1807 doi: 10.1016/j.apt.2014.07.010
|
[31] |
Afshar M N, Wu C Y, Moore R. Design of an electrostatic lunar dust repeller for mitigating dust deposition and evaluation of its removal efficiency[J]. J. of Aerosol Sci.,2014,69:21−31 doi: 10.1016/j.jaerosci.2013.11.005
|
[32] |
Bango J J, Dziekan M, Hodgson E. Development of electrospray technology for the removal of lunar dust from habitable space atmosphere[C]. AIAA 41st International Conference on Environmental Systems (ICES), 2011, AIAA 2011-5203:1-18
|
[33] |
Kawamoto H, Inoue H, Abe Y. Electromagnetic cleaner of lunar dust adhered to spacesuit[C]. Joint Annual Meeting of LEAG-ICEUM-SRR, 2008, 4004:1-1 doi: 10.1061/(ASCE)AS.1943-5525.0000101
|
[34] |
Kawamoto H, Inoue H. Magnetic cleaning device for lunar dust adhering to spacesuits[J]. Journal of Aerospace Engineering,2012,25(1):139−142.
|
[35] |
Kawamoto H. Handheld cleaning tool for lunar dust adhered to spacesuits using magnetic and electrodynamic forces[J]. Journal of Aerospace Engineering, 2021, 34(4):19-25
|
[36] |
Farr B, Wang X, Goree J, et al. Dust mitigation technology for lunar exploration utilizing an electron beam[J]. Acta Astronautica,2020,177:405−409
|
[37] |
Flanagana T M, Goree J. Dust release from surfaces exposed to plasma[J]. Physics of Plasmas,2006,13(123504):1−11
|
[38] |
Farr B, Wang X, Goree J, et al. Improvement of the electron beam (e-beam) lunar dust mitigation technology with varying the beam incident angle[J]. Acta Astronautica,2021,188:362−366 doi: 10.1016/j.actaastro.2021.07.040
|
[39] |
任德鹏, 周晓舟, 张伍, 等. 月面探测器喷气除尘系统设计及试验研究[J]. 航天器工程,2015,24(2):134−139(in chinese)
Ren D P, Zhou X Z, Zhang W, et al. Study on design and test of dust removal for lunar lander[J]. Spacecraft Engineering,2015,24(2):134−139
|
[40] |
Cannon K M, Dreyer C B, Sowers G F, et al. Working with lunar surface materials: Review and analysis of dust mitigation and regolith conveyance technologies[J]. Acta Astronautica,2022,196:259−274 doi: 10.1016/j.actaastro.2022.04.037
|
[41] |
穆萌, 张海燕, 王晓, 等. 月尘被动防护技术的最新研究进展[J]. 物理学报,2021,70(06):135−150(in chinese)
Mu M, Zhang H Y, Wang X, et al. State-of-the-art passive protection technologies of lunar dust[J]. Acta Phys. Sin.,2021,70(06):135−150
|
[42] |
Margiotta D V, Peters W C, Straka S A, et al. The Lotus coating for space exploration: A dust mitigation tool[R].NASA, USA, 2010, 77940I:1-7
|
[43] |
Connor K M O, Abraham N S. Lotus Dust Mitigation Coating and Molecular Adsorber Coating[R]. NASA Tech Briefs, 2015, No. GSFC-E-DAA-TN26955:1-18
|
[44] |
张海燕, 王晓, 李思新, 等. 铝金属基底月尘被动防护表面研究[J]. 空间电子技术,2022,19(6):85−90(in chinese)
Zhang H Y, Wang X, Li S X, et al. The investigation on lunar dust passive protection of aluminum surface[J]. Space Electronic Technology,2022,19(6):85−90
|
[45] |
Wang X, Wang W D, Shao H, et al. Lunar dust-mitigation behavior of aluminum surface with multiscale roughness prepared by a composite etching method[J]. ACS Applied Materials & Interfaces, 2022, 14(29):34020-34028
|
[46] |
Dorota B, Eóin T, Natan G, et al. Lunar dust: Its impact on hardware and mitigation technologies[C]. Proceedings of the 46th Aerospace Mechanisms Symposium, 2022, 287-300
|
[47] |
James R G, Deborah L W, Robert M M. Evaluation of surface modification as a lunar dust mitigation strategy for thermal control surfaces[R]. American Institute of Aeronautics and Astronautics, USA, 2011, 1-12 doi: 10.1016/j.asr.2018.12.014
|
[48] |
Jesus A D, Jonathan W. Upwards migration phenomenon on molten lunar regolith: New challenges and prospects for ISRU[J]. Advances in Space Research,2019,63:2220−2228
|
[49] |
Kavya K M, Pablo D L, Leora P, et al. Proof of concept demonstration of novel technologies for lunar spacesuit dust mitigation[J]. Acta Astronautica,2017,137:472−481 doi: 10.1016/j.actaastro.2017.05.005
|
[50] |
Kavya K M, Leora P, Pablo D L. Self-cleaning spacesuits for future planetary missions using carbon nanotube technology[J]. Acta Astronautica,2019,157:134−144 doi: 10.1016/j.actaastro.2018.12.019
|
[51] |
Crowder M, Haley C. Mitigating molecular and particulate contamination via surface energy[J]. SPIE,2008,7069(706909):1−9.
|
[52] |
Adrienne D, Genevieve D, Xu W, et al . Mitigation of lunar dust adhesion by surface modification[J]. Planetary and Space Science , 2011 ,59: 1784 − 1790
|
[53] |
Robert P M, Ivan I T III, James G M. Pneumatic regolith transfer systems for in-situ resource utilization[R]. NASA, USA, 2010, 1-11
|
[54] |
James G M, Ivan I T III. Planetary regolith delivery systems for ISRU[J]. J. Aerosp. Eng.,2013,26:169−175 doi: 10.1061/(ASCE)AS.1943-5525.0000248
|
[55] |
Biswas A, Park H, Sigmund W. Air filtration with nano and micron sized titania silicate fibers[C]. Proc. , 41st International Conference on Environmental Systems, 2011, 5185:1-7
|
[56] |
Phil G, Heidi S G, Robert S, et al. Effect of nanofibers on spore penetration and lunar dust filtration[J]. Journal of Engineered Fibers and Fabrics,2008,3(2):19−28.
|
[57] |
James R P III, Jacob R S P, Michael R J, et al. Martian atmospheric dust mitigation for ISRU intakes via electrostatic precipitation[C]. ASCE EARTH & SPACE, 2016, 1-65
|
[58] |
James R P III, Michael R J, Jerry J W, et al. Design of a second generation electrostatic precipitator for martian atmospheric dust mitigation of ISRU intakes[R]. NASA, USA, 2018, 1-7
|
[59] |
Beverly W K, John E L, Jerry J W, et al. Electrostatic precipitator dust density measurements in a Mars-like atmosphere[J].Particulate Science and Technology,2021,39(3):271−284
|
[60] |
Eimer B, Taylor L. Dust mitigation: lunar air filtration with a permanent-magnet system (LAF-PMS)[C]. Proc., Lunar and Planetary Institute Science Conference, 2007,1654-1655
|
[61] |
McClean J B, Merrison J P, Iversen J J, et al. Filtration of simulated martian atmosphere for in-situ oxygen production[J]. Planetary and Space Science, 2020, 191(22):1-44
|
[62] |
Hecht M, Hoffman J, Rapp D, et al. Mars Oxygen ISRU Experiment (MOXIE)[J]. Space Sci Rev,2021,217(9):1−76.
|
[63] |
Delgado I R, Handschuh M J. Preliminary assessment of seals for dust mitigation of mechanical components for lunar surface systems[R]. NASA, USA, 2010, TM-216343, 1-7
|
[64] |
王庆功, 王超, 庞勇, 等. 含冰星壤钻取密封与水资源提取转化技术研究[J]. 深空探测学报(中英文),2022,9(6):617−624(in chinese)
Wang Q G, Wang C, Pang Y, et al. Study of drilling-based water extraction technology from icy lunar regolith[J]. Journal of Deep Space Exploration,2022,9(6):617−624.
|
[65] |
范继五, 许金凯, 李鹏. 月面取芯钻具回转间隙密封分析与验证[J]. 长春理工大学学报(自然科学版),2020,43(1):71−75(in chinese)
Fan J W, Xu J K, Li P. Analysis and Verification of Rotary Clearance Seal of Moon Coring Drilling Tool[J]. Journal of Changchun University of Science and Technology(Natural Science Edition),2020,43(1):71−75
|
[66] |
Liang J N, Tao L J, Zhang W W, et al. Analysis of the lunar regolith sample obstruction in the Chang’E-5 drill and its improvement[J]. Advances in Space Research,2022,69:2248−2258. doi: 10.1016/j.asr.2021.12.004
|
[67] |
Zhang W W, Chen H Z, Jianga W K, et al. A spiral seal method in the lunar regolith for Chang’E-5 drill: seal design and experiment[J]. IEEE Access,2019,7:11378−11386. doi: 10.1109/ACCESS.2019.2891954
|
[68] |
Matsumoto K, Takada S, Yokoyama T, et al. Development of mechanical seal against dust for lunar exploration[J]. Trans. JSASS Aerospace Tech.,2020,18(5):165−173.
|
[69] |
Margaret P P, Paula J D. Survey of dust issues for lunar seals and the RESOLVE project[C]. NASA Seal/Secondary Air System Workshop, 2006, 477-494
|
[70] |
Ji M, Wang C Y, Sun L. A structure used for the sealing and locking of lunar samples[C]. ICSRT '18, 2018, 38-41
|
[71] |
Ji M, Sun L, Yang M B. Seal design and test verification of lunar sample container[C]. IOP Conf. Ser. Mater. Sci. Eng. , 2018, 439(042025): 1-7
|
[72] |
Zhang B, Yu M, Yang H Y. Leakage analysis and ground tests of the O-type rubber ring seal applied in lunar sample return devices[J]. Proc IMechE Part G:J Aerospace Engineering,2015,229(3):479−491. doi: 10.1177/0954410014537232
|
[73] |
Zhang B, Hong H C, Yu M, et al. Leakage analysis and ground tests of knife edge indium seal to lunar sample return devices[J]. Proc IMechE Part G:J Aerospace Engineering,2018,233(6):1−13.
|
[74] |
邓湘金, 郑燕红, 金晟毅, 等. 嫦娥五号采样封装系统设计与实现[J]. 中国科学:技术科学,2021,51(7):753−762(in chinese)
Deng X J, Zheng Y H, Jin S Y, et al. Design and implementation of sampling, encapsulating, and sealing system of Chang’e-5[J]. SCIENTIA SINICA Technologica,2021,51(7):753−762
|
[75] |
Feargus A J A, Simon S, Simeon J B. Gas containment for in situ sample analysis on the Moon: Utility of sealing materials in the presence of dust[J]. Planetary and Space Science, 2020, 180(104784):1-10
|
[76] |
Paulo Y, Thimal D A, Paul B, et al. Sample sealing approaches for mars sample return caching[R]. NASA, USA, 2013, 1-24
|
[77] |
Paulo J Y. Hermetic seal designs for sample return sample tubes[R]. NASA Tech Briefs, 2013, NPO-48927, 9-10
|
[78] |
Bao X Q, Paulo Y, Pradeep B.FE simulation of SMA seal for Mars sample return[J]. Proc. of SPIE,2016,8692(86924T):1-9
|
[79] |
Zhang H Y , Wang Y, Chen L P, et al. In-situ lunar dust deposition amount induced by lander landing in Chang’E-3 mission[J]. SCIENCE CHINA : Technological Sciences, 2020, 63(3): 520-527
|
[80] |
Reiss P, Grill L, Barber S J. Thermal extraction of volatiles from the lunar regolith simulant NU-LHT-2M: preparations for in-situ analyses on the Moon[J]. Planetary and Space Science,2019,175:41−51
|
[81] |
GB/T 13554-2020, 高效空气过滤器[S]
GB/T 13554-2020, 高效空气过滤器[S]
|
[82] |
孙浩, 沈志刚, 张晓静, 等. 月尘特性与模拟月尘研制现状[J]. 载人航天,2015,21(6):642−652(in chinese)
Sun H, Shen Z G, Zhang X J, et al. Properties of lunar dust and research status of its simulants[J]. Manned Spaceflight,2015,21(6):642−652
|
[83] |
Liu Y, Taylor L A. Lunar dust: Chemistry and physical properties and implications for toxicity[C]. NLSI Lunar Science Conference, 2008, 2072:1-2
|
[84] |
曹克楠, 董明潭, 佘振兵, 等. 一种以极低的样品消耗同时测定嫦娥五号月壤粒度和矿物组成的新方法[J]. 中国科学: 地球科学,2022,65(9):1704−1714(in chinese)
Cao K N, Dong M T, She Z B, et al. A novel method for simultaneous analysis of particle size and mineralogy for Chang’E-5 lunar soil with minimum sample consumption[J]. Science China Earth Sciences,2022,65(9):1704−1714
|