[1] Martynov D V, Hall E D, Abbott B P, et al. Sensitivity of the advanced LIGO detectors at the beginning of gravitational wave astronomy[J]. Physical Review D,2016,93(11):112004 doi: 10.1103/PhysRevD.93.112004
[2] Dolesi R, Bortoluzzi D, Bosetti P, et al. Gravitational sensor for LISA and its technology demonstration mission[J]. Classical and Quantum Gravity,2003,20(10):S99 doi: 10.1088/0264-9381/20/10/312
[3] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity,2016,33(3):035010 doi: 10.1088/0264-9381/33/3/035010
[4] Bao M, Yang H. Squeeze film air damping in MEMS[J]. Sensors and Actuators A:Physical,2007,136(1):3−27 doi: 10.1016/j.sna.2007.01.008
[5] Schumaker B L. Disturbance reduction requirements for LISA[J]. Classical and Quantum Gravity,2003,20(10):S239 doi: 10.1088/0264-9381/20/10/327
[6] Bao M, Yang H, Yin H, et al. Energy transfer model for squeeze-film air damping in low vacuum[J]. Journal of Micromechanics and Microengineering,2002,12(3):341 doi: 10.1088/0960-1317/12/3/322
[7] Suijlen M A G, Koning J J, van Gils M A J, et al. Squeeze film damping in the free molecular flow regime with full thermal accommodation[J]. Sensors and Actuators A:Physical,2009,156(1):171−179 doi: 10.1016/j.sna.2009.03.025
[8] Dolesi R, Hueller M, Nicolodi D, et al. Brownian force noise from molecular collisions and the sensitivity of advanced gravitational wave observatories[J]. Physical Review D,2011,84(6):063007 doi: 10.1103/PhysRevD.84.063007
[9] Mao J J, Tan Y J, Liu J P, et al. Residual gas damping noise in constrained volume in space-borne gravitational wave detection[J]. Classical and Quantum Gravity,2023,40(7):075015 doi: 10.1088/1361-6382/acc167
[10] Zhao Y J. Experimental study on the gas damping effect in the space inertial sensor[D]. Wuhan: Huazhong University of Science & Technology, 2023(赵玉洁. 空间惯性传感器中气体阻尼效应实验研究[D]. 武汉: 华中科技大学, 2023(in chinese)
[11] Cavalleri A, Ciani G, Dolesi R, et al. Increased Brownian force noise from molecular impacts in a constrained volume[J]. Physical review letters,2009,103(14):140601 doi: 10.1103/PhysRevLett.103.140601
[12] Li X. Studying the influence of squeeze-film damping testing the Newtonian inverse-square-law at close range in using a torsion pendulum[D]. Wuhan: Huazhong University of Science & Technology, 2015(李葭. 扭秤检验近距离牛顿反平方定律实验中的压膜阻尼影响研究[D]. 武汉: 华中科技大学, 2015(in chinese)
[13] 3rd Edition)[M]. Beijing: National Defense Industry Press, 2004(达道安. 真空设计手册(第3版)[M]. 北京: 国防工业出版社, 2004(in chinese) Da D A. Vacuum Design Handbook
[14] Feres R, Yablonsky G (2004). Knudsen’s cosine law and random billiards. Chemical Engineering Science, 59(7), 1541–1556
[15] Greenwood J. The correct and incorrect generation of a cosine distribution of scattered particles for Monte-Carlo modelling of vacuum systems[J]. Vacuum,2002,67(2):217−222 doi: 10.1016/S0042-207X(02)00173-2
[16] Celestini F, Mortessagne F. Cosine law at the atomic scale: toward realistic simulations of Knudsen diffusion[J]. Physical Review E,2008,77(2):021202 doi: 10.1103/PhysRevE.77.021202
[17] Liu Z H, Wang G T, Yang K Z. The dynamical character ofadsorption[M]. Beijing: Science Press, 1964(柳正辉, 王果庭, 杨孔章. 吸附的动力学特性[M]. 北京: 科学出版社, 1964(in chinese)
[18] Okutomi K, Akutsu T, Ando M, et al. Residual Gas Noise in the Test-mass Module for DECIGO Pathfinder[C]//Journal of Physics: Conference Series. IOP Publishing, 2015, 610(1): 012040
[19] Nappo F, Desiderio D, Franzoso A, et al. Experience and design drivers for the Inertial Sensor on the LISA Pathfinder Mission[C]//AIP Conference Proceedings. American Institute of Physics, 2006, 873(1): 539-547
[20] Ke J, Luo J, Tan Y J, et al. Influence of the residual gas damping noise in the test of the gravitational inverse-square law[J]. Classical and Quantum Gravity,2020,37(20):205008 doi: 10.1088/1361-6382/abb076