[1] |
Wu C, Kim T W, Guo T, et al. Mimicking classical conditioning based on a single flexible memristor[J]. Advanced Materials,2017,29:1602890 doi: 10.1002/adma.201602890
|
[2] |
Wu C, Kim T W, Choi H Y, et al. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability[J]. Nature Communications,2017,8:752 doi: 10.1038/s41467-017-00803-1
|
[3] |
Zhu L Q, Wan C J, Gu L Q, et al. Artificial synapse network on inorganic proton conductor for neuromorphic systems[J]. Nature Communications,2014,5:3158 doi: 10.1038/ncomms4158
|
[4] |
Lee M, Lee W, Choi S, et al. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity[J]. Advanced Materials,2017,29(28):1700951 doi: 10.1002/adma.201700951
|
[5] |
Kaspar C, Ravoo B J, Van der Wiel W G, et al. The rise of intelligent matter[J]. Nature,2021,594(7863):345−355 doi: 10.1038/s41586-021-03453-y
|
[6] |
Prezioso M, Merrikh-Bayat F, Hoskins B D, et al. Training andoperation of an integrated neuromorphic network based on metal-oxide memristors[J]. Nature,2015,521(7550):61−64 doi: 10.1038/nature14441
|
[7] |
Ham D, Park H, Hwang S, et al. Neuromorphic electronics based on copying and pasting the brain[J]. Nature Electronics,2021,4(9):635−644 doi: 10.1038/s41928-021-00646-1
|
[8] |
Oh S Y, Kim T H, Kwak M G, et al. HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications[J]. IEEE Electron Device Letters,2017,38(6):732−735 doi: 10.1109/LED.2017.2698083
|
[9] |
Li N, He C L, Wang Q Q, et al. Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses[J]. Nano Research,2022,15(6):5418−5424 doi: 10.1007/s12274-022-4122-z
|
[10] |
Li G, Xie D G, Zhong H, et al. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors[J]. Nature Communication,2022,13(1):1729 doi: 10.1038/s41467-022-29456-5
|
[11] |
Liu D Q, Cheng H F, Zhu X, et al. Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films[J]. ACS Applied Materials & Interfaces,2013,5(21):11258−11264
|
[12] |
Schneider J I D, Angelomé P C, Granja L P, et al. Resistive switching of self-assembled silver nanowire networks governed by environmental conditions[J]. Advanced Electronic Materials,2022,8(11):2200631 doi: 10.1002/aelm.202200631
|
[13] |
Li Q, Diaz-Alvarez A, Tang D M, et al. Sleep-dependent memory consolidation in a neuromorphic nanowire network[J]. ACS Applied Materials & Interfaces,2020,12(45):50573−50580
|
[14] |
Wang W, Wang M, Ambrosi E, et al. Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices[J]. Nature Communications,2019,10:81 doi: 10.1038/s41467-018-07979-0
|
[15] |
郭家玮, 李文豪, 郑俊杰, 等. 基于电化学金属化机制的电子突触电导可控性研究进展[J]. 真空科学与技术学报,2021,41(8):699−709
|
[16] |
Milano G, Pedretti G, Fretto M, et al. Brain-inspired structural plasticity through reweighting and rewiring in multi-terminal self-organizing memristive nanowire networks[J]. Advanced Intelligent Systems,2020,2(8):2000096 doi: 10.1002/aisy.202000096
|
[17] |
Hochstetter J, Zhu R, Loeffler A, et al. Avalanches and edge-of-chaos learning in neuromorphic nanowire networks[J]. Nature Communications,2021,12(1):4008 doi: 10.1038/s41467-021-24260-z
|
[18] |
Diaz-Alvarez A, Higuchi R, Sanz-Leon P, et al. Emergent dynamics of neuromorphic nanowire networks[J]. Scientific Reports,2019,9:14920 doi: 10.1038/s41598-019-51330-6
|
[19] |
Nirmalraj P N, Bellew A T, Bell A P, et al. Manipulating connectivity and electrical conductivity in metallic nanowire networks[J]. Nano Letters,2012,12(11):5966−5971 doi: 10.1021/nl303416h
|
[20] |
Wang Z R, Joshi S, Savelev S E, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing[J]. Nature Materials,2017,16(1):101−108 doi: 10.1038/nmat4756
|
[21] |
Kuzum D, Yu S M, Wong H S P. Synaptic electronics: materials, devices and applications[J]. Nanotechnology,2013,24(38):382001 doi: 10.1088/0957-4484/24/38/382001
|
[22] |
Gao S, Liu G, Yang H L, et al. An oxide schottky junction artificial optoelectronic synapse[J]. ACS Nano,2019,13(2):2634−2642 doi: 10.1021/acsnano.9b00340
|
[23] |
Li C, Wang Z R, Rao M Y, et al. Long short-term memory networks in memristor crossbar arrays[J]. Nature Machine Intelligence,2019,1(1):49−57 doi: 10.1038/s42256-018-0001-4
|
[24] |
Wang Y, Lv Z Y, Chen J R, et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing[J]. Advanced Materials,2018,30(38):1802883 doi: 10.1002/adma.201802883
|
[25] |
Zhu J D, Yang Y C, Jia R D, et al. Ion gated synaptic transistors based on 2D van der waals crystals with tunable diffusive dynamics[J]. Advanced Materials,2018,30(21):1800195 doi: 10.1002/adma.201800195
|
[26] |
Kim H J, Park T H, Yoon K J, et al. Fabrication of a Cu-Cone-shaped cation source inserted conductive bridge random access memory and its improved switching reliability[J]. Advanced functional materials,2019,29(8):1806278 doi: 10.1002/adfm.201806278
|