[1] |
Tang B, Chen H Q, Peng H P, et al. Graphene modified TiO2 composite photocatalysts: mechanism, progress and perspective[J]. Nanomaterials,2018,8(2):105 doi: 10.3390/nano8020105
|
[2] |
Visa M, Bogatu C, Duta A. Tungsten oxide-fly ash oxide composites in adsorption and photocatalysis[J]. Journal of Hazardous Materials,2015,289:244−256 doi: 10.1016/j.jhazmat.2015.01.053
|
[3] |
Wang H M, Liu Q X, You C F. Regeneration of sulfur-deactivated TiO2 photocatalysts[J]. Applied Catalysis A: General,2019,572:15−23 doi: 10.1016/j.apcata.2018.12.031
|
[4] |
Tang B, Wang S L, Zhang J, et al. Three-dimensional graphene monolith-based composite: superiority in properties and applications[J]. International Materials Reviews,2018,63(3):204−225 doi: 10.1080/09506608.2017.1344377
|
[5] |
Long R, English N J, Prezhdo O V. Photo-induced charge separation across the Graphene-TiO2 interface is faster than energy losses: a time-domainab initio analysis[J]. Journal of the American Chemical Society,2012,134(34):14238−14248 doi: 10.1021/ja3063953
|
[6] |
Park J, Ahn Y H, Ruiz-Vargas C. Imaging of photocurrent generation and collection in Single-Layer graphene[J]. Nano Letters,2009,9(5):1742−1746 doi: 10.1021/nl8029493
|
[7] |
Sun Y F, He Y F, Tang B, et al. Selective adsorption and decomposition of pollutants using RGO-TiO2 with optimized surface functional groups[J]. RSC Advances,2018,8(56):31996−32002 doi: 10.1039/C8RA05345F
|
[8] |
Tang B, Chen H Q, He Y F et al. Influence from defects of three-dimensional graphene network on photocatalytic performance of composite photocatalyst[J]. Composites Science and Technology,2017,150:54−64 doi: 10.1016/j.compscitech.2017.07.007
|
[9] |
Li H L, Eddaoudi M, Keeffe M O, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402(18):276−279
|
[10] |
Sue Y C, Wu J W, Chung S E, et al. Synthesis of hierarchical Micro/Mesoporous structures via solid-aqueous interface growth: zeolitic imidazolate framework-8 on siliceous mesocellular foams for enhanced pervaporation of Water/Ethanol mixtures[J]. ACS Applied Materials & Interfaces,2014,6(7):5192−5198
|
[11] |
Sun Y F, Ma M, Tang B, et al. Graphene modified Cu-BTC with high stability in water and controllable selective adsorption of various gases[J]. Journal of Alloys & Compounds,2019,808:151721
|
[12] |
Yang Y Q, Dong H, Wang Y, et al. Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation[J]. Journal of Solid State Chemistry,2018,258:582−587 doi: 10.1016/j.jssc.2017.11.033
|
[13] |
Liu Y P, Shen S J, Zhang J T, et al. Cu2-xSe/CdS composite photocatalyst with enhanced visible light photocatalysis activity[J]. Applied Surface Science,2019,478:762−769 doi: 10.1016/j.apsusc.2019.02.010
|
[14] |
Tang B, Dai Y Z, Sun Y F, et al. Graphene and MOFs co-modified composites for high adsorption capacity and photocatalytic performance to remove pollutant under both UV- and visible-light irradiation[J]. Journal of Solid State Chemistry, 2020, 284
|
[15] |
Chen F H, Yan F F, Chen Q T, et al. Fabrication of Fe3O4 @SiO2 @TiO2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation[J]. Dalton Transactions,2014,43(36):13537−13544 doi: 10.1039/C4DT01702A
|
[16] |
Zhang W L, Li Y, Wang C, et al. Kinetics of heterogeneous photocatalytic degradation of rhodamine B by TiO2-coated activated carbon: Roles of TiO2 content and light intensity[J]. Desalination,2011,266:40−45 doi: 10.1016/j.desal.2010.07.066
|
[17] |
Pang Y L, Bhatia S, Abdullah A Z. Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution[J]. Separation and Purification Technology,2011,77(3):331−338 doi: 10.1016/j.seppur.2010.12.023
|
[18] |
Okte A N, Karamanis D, Chalkia E, et al. The effect of ZnO or TiO2 loaded nanoparticles on the adsorption and photocatalytic performance of Cu-BTC and ZIF-8 MOFs[J]. Materials Chemistry and Physics,2017,187:5−10 doi: 10.1016/j.matchemphys.2016.11.059
|
[19] |
Tang B, Ji G J, Wang Z W, et al. Three-dimensional graphene networks and reduced graphene oxide nanosheets co-modified dye-sensitized solar cells[J]. RSC Advances,2017,7(72):45280−45286 doi: 10.1039/C7RA09135D
|
[20] |
Hu G X, Tang B. Photocatalytic mechanism of graphene/titanate nanotubes photocatalyst under visible-light irradiation[J]. Materials Chemistry and Physics,2013,138(2-3):608−614 doi: 10.1016/j.matchemphys.2012.12.027
|
[21] |
Yin Y, Zhang H T , Huang P R, et al. Inducement of nanoscale Cu-BTC on nanocomposite of PPy-rGO and its performance in ammonia sensing [J]. Materials Research Bulletin, 2018, 99: 152-160
|