[1] |
Nitta N, Wu F, Lee J T, et al. Li-ion battery materials: present and future[J]. Materials Today,2015,18(5):252−264
|
[2] |
Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy & Environmental Science,2011,4(9):3243−3262
|
[3] |
Zeng X, Li J, Singh N. Recycling of spent lithium-ion battery: a critical review[J]. Critical Reviews in Environmental ence & Technology,2014,44(10):1129−1165
|
[4] |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature,2012,488(7411):294−303
|
[5] |
Sun Y, Guo S, Zhou H. Exploration of advanced electrode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials,2019,9(23):1800212.1−1800212.18
|
[6] |
Bin D, Wang F, Tamirat A G, et al. Progress in aqueous rechargeable sodium-ion batteries[J]. Advanced energy materials,2018,8(17):1703008.1−1703008.31
|
[7] |
Che H, Chen S, Xie Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy & Environmental ence,2017,10(5):1075−1101
|
[8] |
Suo L, Borodin O, Wang Y, et al. "Water-in-Salt" electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting[J]. Advanced Energy Materials,2017,7(21):1701189.1−1701189.13
|
[9] |
Jung Y, Hong S, Kim D. Electrochemical sodium ion intercalation properties of Na2.7Ru4O9 in nonaqueous and aqueous electrolytes[J]. Journal of the Electrochemical Society,2013,160(6):A897−A900
|
[10] |
Wang Y, Mu L, Liu J, et al. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries[J]. Advanced Energy Materials,2015,5(22):1501005.1−1501005.8
|
[11] |
Zhang X, Hou Z, Li X, et al. Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes[J]. Journal of Materials Chemistry A,2016,4(3):856−860
|
[12] |
Zhang Y, Yuan C, Ye K, et al. An aqueous capacitor battery hybrid device based on Na-ion insertion-deinsertion in λ-MnO2 positive electrode[J]. Electrochimica Acta,2014,148:237−243
|
[13] |
Song W, Ji X, Zhu Y, et al. Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode[J]. Chem Electro Chem,2014,1(5):871−876
|
[14] |
Fernandez-Ropero A J, Saurel D, Acebedo B, et al. Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries[J]. Journal of Power Sources,2015,291(30):40−45
|
[15] |
Zhang Y, Ye K, Cheng K, et al. Three-dimensional lamination-like P2-Na2/3Ni1/3Mn2/3O2 assembled with two-dimensional ultrathin nanosheets as the cathode material of an aqueous capacitor battery[J]. Electrochimica Acta,2014,148:195−202
|
[16] |
Qing Z, Yong L, Jun C. Advanced organic electrode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials,2017,7(8):1601792.1−1601792.22
|
[17] |
Wu X, Sun M, Shen Y, et al. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6 -NaTi2(PO4)3 intercalation chemistry.[J]. Chem Sus Chem,2014,7(2):407−411
|
[18] |
Chen L, Shao H, Zhou X, et al. Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics[J]. Nature Communications,2016,7:11982.1−11982.10
|
[19] |
Li Z, Young D, Xiang K, et al. towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system[J]. Advanced Energy Materials,2013,3(3):290−294
|
[20] |
Wu W, Shabhag S, Chang J, et al. Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na0.44MnO2 aqueous sodium-ion batteries[J]. Journal of the Electrochemical Society,2015,162(6):A803−A808
|
[21] |
Whitacre J F, Tevar A, Sharma S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device[J]. Electrochemistry Communications,2010,12(3):463−466
|
[22] |
Wei C, Yu L, Cui C, et al. Ultrathin MnO2 nanoflakes as efficient catalysts for oxygen reduction reaction[J]. Chemical Communications,2014,50(58):7885−7888
|
[23] |
Akimoto J, Hayakawa H, Kijima N, et al. Single-crystal synthesis and structure refinement of Na0.44MnO2 . 17th International Conference on Solid Compounds of Transition Elements. Trans Tech Publications, 2011, 170: 198−202
|
[24] |
Sauvage F, Laffont L, Tarascon J M, et al. study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2[J]. Inorganic Chemistry,2007,46(8):3289−3294
|
[25] |
Ma G, Zhao Y, Huang K, et al. Effects of the starting materials of Na0.44MnO2 cathode materials on their electrochemical properties for Na-ion batteries[J]. Electrochim Acta,2016,222:36−43
|
[26] |
Cao Y, Xiao L, Wang W, et al. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J]. Advanced Materials,2011,23(28):3155−3160
|