[1] |
Frisbee R H. Advanced space propulsion for the 21st century[J]. Journal of Propulsion and Power,2003,19(6):1129−1154 doi: 10.2514/2.6948
|
[2] |
王鑫龙. 射频离子微推进器的设计与实验研究[D]. 沈阳: 东北大学, 2013(in chinese)
Wang X L. The radio-frequency micro ion thruster design and experimental study[D]. Shenyang: Northeastern University, 2013
|
[3] |
Killinger R, Leiter H, Kukies R. RITA ion propulsion systems for commercial and scientific applications[C]//Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati: AIAA, 2007
|
[4] |
刘辉, 牛翔, 李鑫, 等. 碘工质电推进技术研究综述[J]. 推进技术,2019,40(1):12−25(in chinese)
Liu H, Niu X, Li X, et al. Reviews on electrical propulsion technology using iodine alternatives[J]. Journal of Propulsion Technology,2019,40(1):12−25
|
[5] |
Dankanich J W, Szabo J, Pote B, et al. Mission and system advantages of iodine hall thrusters[C]//Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland: AIAA, 2014
|
[6] |
周长斌. 碘工质电推进储供系统设计及实验研究[D]. 上海: 上海交通大学, 2020(in chinese)
Zhou C B. Design and experimental study of Iodine propellant feed system for electric propulsion[D]. Shanghai: Shanghai Jiao Tong University, 2020
|
[7] |
张元哲, 韩先伟, 杨振宇, 等. 碘工质射频离子推力器栅极系统束流特性仿真[J]. 中国空间科学技术,2022,42(6):115−124(in chinese)
Zhang Y Z, Han X W, Yang Z Y, et al. Ion beam characteristics of iodine RF ion thruster optical system[J]. Chinese Space Science and Technology,2022,42(6):115−124
|
[8] |
Holste K, Gärtner W, Zschätzsch D, et al. Performance of an iodine-fueled radio-frequency ion-thruster[J]. The European Physical Journal D,2018,72(1):9 doi: 10.1140/epjd/e2017-80498-5
|
[9] |
Szabo J, Robin R. Iodine plasma species in a Hall Effect thruster plume[C]//Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose: AIAA, 2013
|
[10] |
Kee R J, Coltrin M E, Glarborg P. Chemically reacting flow: theory and practice[M]. Hoboken: Wiley-Interscience, 2003
|
[11] |
Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. New York: Wiley, 1994
|
[12] |
颜能文, 郭宁, 谷增杰. 碘工质空间电推进系统关键技术分析[J]. 真空与低温,2018,24(5):332−337(in chinese) doi: 10.3969/j.issn.1006-7086.2018.05.008
Yan N W, Guo N, Gu Z J. Key technical analysis of iodine space electric propulsion system[J]. Vacuum and Cryogenics,2018,24(5):332−337 doi: 10.3969/j.issn.1006-7086.2018.05.008
|
[13] |
Grondein P, Lafleur T, Chabert P, et al. Global model of an iodine gridded plasma thruster[J]. Physics of Plasmas,2016,23(3):033514 doi: 10.1063/1.4944882
|
[14] |
Yang J H, Jia S X, Zhang Z H, et al. Performance of a 4 cm iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology,2020,22(9):094006 doi: 10.1088/2058-6272/ab891d
|
[15] |
王彪, 龚福君, 叶宇飞, 等. 气压对气体放电影响的实验探究[J]. 物理教学探讨,2006,24(23):51−53(in chinese)
Wang B, Gong F J, Ye Y F, et al. Experimental investigation on the effect of air pressure on gas discharge[J]. Journal of Physics Teaching,2006,24(23):51−53
|