[1] |
Shimizu K, Fukunaga H, Blajan M. Biomedical applications of atmospheric microplasma[J]. Current Applied Physics,2014,14(7):S154−S161
|
[2] |
欧阳吉庭, 张宇, 秦宇. 微放电及其应用[J]. 高电压技术,2016,42(3):673−684(in chinese)
Ouyang J T, Zhang Y, Qin Y. Micro-discharge and its applications[J]. High Voltage Engineering,2016,42(3):673−684
|
[3] |
Kim J Y, Kaganovich I, Lee H C. Review of the gas breakdown physics and nanomaterial-based ionization gas sensors and their applications[J]. Plasma Sources Science & Technology,2022 ,31(3):33001
|
[4] |
Dirk J, Franzke J, Manz A. Scaling and the design of miniaturized chemical-analysis systems[J]. Nature,2006,442(7101):374−380 doi: 10.1038/nature05059
|
[5] |
Fu Y, Wang H, Zheng B, et al. Direct current microplasma formation around microstructure arrays[J]. Applied Physics Letters,2021,118(17):174101 doi: 10.1063/5.0046312
|
[6] |
Yuan X, Tang J, Duan Y X. Microplasma technology and its applications in analytical chemistry[J]. Applied Spectroscopy Reviews,2011,46(7):581−605 doi: 10.1080/05704928.2011.604814
|
[7] |
孟国栋, 折俊艺, 应琪, 等. 微米尺度气体击穿的数值模拟研究进展[J]. 电工技术学报,2022,37(15):3857−3875(in chinese)
Meng G D, She J Y, Ying Q, et al. Research progress on numerical simulation of gas breakdown at microscale[J]. Transactions of China Electrotechnical Society,2022,37(15):3857−3875
|
[8] |
牛海清, 徐乐平, 李小潇, 等. SF6气体正极性电晕放电特性仿真研究[J]. 高电压技术,2021,47(11):4063−4071(in chinese)
Niu H Q, Xu L P, Li X X, et al. Simulation and study of positive corona characteristics in SF6 gas[J]. High Voltage Engineering,2021,47(11):4063−4071
|
[9] |
廖瑞金, 刘康淋, 伍飞飞, 等. 棒-板电极直流负电晕放电过程中重粒子特性的仿真研究[J]. 高电压技术,2014,40(4):965−971(in chinese)
Liao R J, Liu K L, Wu F F, et al. Simulative study on characteristic of heavy particles in negative bar-plate dc corona discharge[J]. High Voltage Engineering,2014,40(4):965−971
|
[10] |
Fu Y, Peng Z, Verboncoeur J P. Gas breakdown in atmospheric pressure microgaps with a surface protrusion on the cathode [J]. Applied Physics Letters, 2018, 112(25)254102
|
[11] |
王林华, 孙岩洲, 董克亮, 等. 微间隙气体放电击穿过程分析[J]. 电子器件,2020,43(6):1197−1202(in chinese) doi: 10.3969/j.issn.1005-9490.2020.06.002
Wang L H, Sun Y Z, Dong K L, et al. Analysis of breakdown process of micro-gap gas discharge[J]. Chinese Journal of Electron Devices,2020,43(6):1197−1202 doi: 10.3969/j.issn.1005-9490.2020.06.002
|
[12] |
Cejas E, Prevosto L, Minotti F O, et al. Cathode-sheath model for field emission sustained atmospheric pressure discharges[J]. Physics of Plasmas,2021,28(3):033506 doi: 10.1063/5.0035710
|
[13] |
Li Y S, Sun Y Z, Wang L H, et al. Research on the characteristics of micro-spacing gas discharge at different pressures [J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(01):75−81(李彦森, 孙岩洲, 王林华, 等. 不同气压下微间距气体放电特性分析[J]. 真空科学与技术学报, 2022, 42(01):75−81(in chinese)
|
[14] |
陈芸, 孙岩洲, 李彦森, 等. 微间距气压对场致发射影响的分析与计算[J]. 电气工程学报,2023,18(1):251−257(in chinese) doi: 10.11985/2023.01.028
Chen Y, Sun Y Z, Li Y S, et al. Analysis and calculation of the infuence of air pressure on field emission at micro-gap[J]. Journal of Electrical Engineering,2023,18(1):251−257 doi: 10.11985/2023.01.028
|
[15] |
常泽洲, 孟国栋, 应琪, 等. 阴极曲率半径对微米尺度气隙击穿的影响规律研究[J]. 电工技术学报,2023,38(4):1032−1041(in chinese)
Chang Z Z, Meng G D, Ying Q, et al. Study on the influence of cathode radius on the breakdown characteristics across microgaps in air[J]. Transactions of China Electrotechnical Society,2023,38(4):1032−1041
|
[16] |
柴钰, 弓丽萍, 张晶园, 等. 微纳电离式矿井甲烷传感器安全放电及敏感机理仿真[J]. 电工技术学报,2019,34(23):10(in chinese)
Chai Y, Gong L P, Zhang J Y, et al. Simulation of safe discharge and sensitive mechanism of micro-nano ionized mine methane sensor[J]. Transactions of China Electrotechnical Society,2019,34(23):10
|
[17] |
柴钰, 张妮, 刘杰, 等. 微尺度下N2–O2电晕放电的动态特性二维仿真[J]. 物理学报,2020,69(16):10(in chinese) doi: 10.7498/aps.69.20200095
Chai Y, Zhang N, Liu J, et al. Two-dimensional simulation of dynamic characteristics of N2–O2 corona discharge at micro scale[J]. Journal of Physics,2020,69(16):10 doi: 10.7498/aps.69.20200095
|
[18] |
Kossyi I A, Kostinsky A Y, Matveyev A A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Science and Technology,1992,1(3):207 doi: 10.1088/0963-0252/1/3/011
|
[19] |
Pancheshnyi S, Nudnova M, Starikovskii A. Development of a cathode-directed streamer discharge in air at different pressures: Experiment and comparison with direct numerical simulation[J]. Phys. Rev. E,2005,71(1):016407 doi: 10.1103/PhysRevE.71.016407
|
[20] |
Poggie J, Adamovich I, Bisek N, et al. Numerical simulation of nanosecond-pulse electrical discharges[J]. Plasma Sources Science and Technology,2013,22(1):015001
|
[21] |
Liu X Q. Cathode electronics [M]. Beijng: Science Press, 1980(刘学悫 . 阴极电子学[M]. 科学出版社, 1980(in chinese)
|
[22] |
王新庆, 王淼, 李振华. 单根纳米导线场发射增强因子的计算[J]. 物理学报,2005(03):1347−1351(in chinese) doi: 10.3321/j.issn:1000-3290.2005.03.060
Wang X Q, Wang M, Li Z H. Calculation of the field emission enhancement factor for single nanowires[J]. Acta Physica Sinica,2005(03):1347−1351 doi: 10.3321/j.issn:1000-3290.2005.03.060
|
[23] |
王党树, 邓翾, 刘树林, 等. 甲烷/空气混合气体在针板电极下的微间隙放电特性[J]. 电工技术学报,2023,38(13):3388−3399(in chinese)
Wang D S, Deng X, Liu S L, et al. Microgap discharge characteristics of methane / air under the needle plate electrode[J]. Transactions of China Electrotechnical Society,2023,38(13):3388−3399
|