[1] |
索科洛夫E, 津格尔H M. 喷射器[M]. 北京: 科学出版社, 1977:280(in Chinese)
Sokolo E, Zinger H M. Ejector[M]. Beijing: science press, 1977:280
|
[2] |
Shestonaloy K O, Huang B J, Peternko V O, et al. Investigation of an experimental ejector refrigeration machine operating with refrigerant R245fa at design and off-design working conditions. Part 1. Theoretical analysis[J]. International Journal of Refrigeration,2015,55:201−211 doi: 10.1016/j.ijrefrig.2015.01.016
|
[3] |
Huang B J, Chang J M, Wang C P, et al. A 1-D analysis of ejector performance[J]. International Journal of Refrigeration,1999,22(5):354−364 doi: 10.1016/S0140-7007(99)00004-3
|
[4] |
于文艳, 王海博, 田瑞. 混合室轴向结构参数对蒸汽喷射器性能的影响[J]. 真空科学与技术学报,2018,38(06):455−458(in Chinese)
Yu Wenyan, Wang Haibo, Tian Rui. Influence of axial structure parameters of mixing chamber on performance of steam ejector[J]. Journal of Vacuum Science and Technology,2018,38(06):455−458
|
[5] |
Dong J M, Hu Q Y, Yu M Q, et al. Numerical investigation on the influence of mixing chamber length on steam ejector performance[J]. Applied Thermal Engineering,2020,174:115204 doi: 10.1016/j.applthermaleng.2020.115204
|
[6] |
王志艳, 胡林静, 席东民, 等. 混合室结构对蒸汽喷射器性能的影响[J]. 真空科学与技术学报,2020,40(02):180−186(in Chinese)
Wang Zhiyan, Hu Linjing, Xi Dongmin, et al. Effect of mixing chamber structure on the performance of steam ejector[J]. Journal of Vacuum Science and Technology,2020,40(02):180−186
|
[7] |
Wu H Q, Liu Z L, Han B, et al. Numerical investigation of the influences of mixing chamber geometries on steam ejector performance[J]. Desalination:The International Journal on the Science and Technology of Desalting and Water Purification,2014,353:15−20
|
[8] |
Yapc R, Ersoy H K, Aktoprako A, et al. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio[J]. International Journal of Refrigeration,2008,31(7):1183−1189 doi: 10.1016/j.ijrefrig.2008.02.010
|
[9] |
Yana J, Caia W, Li Y. Geometry parameters effect for air-cooled ejector cooling systems with R134a refrigerant[J]. Renewable Energy,2012,46:155−163 doi: 10.1016/j.renene.2012.03.031
|
[10] |
Tashtoush B, Alshare A, Al-rifai S. Performance study of ejector cooling cycle at critical mode under superheated primary flow[J]. Energy Conversion & Management,2015,94(2):300−310
|
[11] |
ESDU. Jet pumps, data item 86030. London: ESDU International Ltd, 1985
|
[12] |
Poirier M. Influence of operating conditions on the optimal nozzle exit position for vapor ejector[J]. Applied Thermal Engineering,2022,210:118377 doi: 10.1016/j.applthermaleng.2022.118377
|
[13] |
Yan J, Lin C, Cai W J. et al. Experimental study on key geometric parameters of an R134A ejector cooling system[J]. International Journal of Refrigeration,2016,67:102−108 doi: 10.1016/j.ijrefrig.2016.04.001
|
[14] |
Chong D T, Hu M Q, Chen W X, et al. Experimental and numerical analysis of supersonic air ejector[J]. Applied Energy,2014,130:679−684 doi: 10.1016/j.apenergy.2014.02.023
|
[15] |
Ruangtrakoon N, Thongtip T, Aphornratana S, et al. CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle[J]. International Journal of Thermal Sciences,2013,63:133−145 doi: 10.1016/j.ijthermalsci.2012.07.009
|
[16] |
Rusly E, Aye L, Charters W, et al. CFD analysis of ejector in a combined ejector cooling system[J]. International Journal of refrigeration,2005,28(7):1092−1101 doi: 10.1016/j.ijrefrig.2005.02.005
|
[17] |
Chen S J, Chen G M, Fang L Y. An experimental study and 1-D analysis of an ejector with a movable primary nozzle that operates with R236fa[J]. International Journal of Refrigeration,2015,60:19−25 doi: 10.1016/j.ijrefrig.2015.08.011
|
[18] |
Valle D G J, Jabardo S J, Ruiz C F, et al. An experimental investigation of a R-134a ejector refrigeration system[J]. International Journal of Refrigeration,2014,46:105−113 doi: 10.1016/j.ijrefrig.2014.05.028
|
[19] |
Kumar V, Subbarao P M V, Singhal G. Effect of nozzle exit position (NXP) on variable area mixing ejector[J]. SN Applied Sciences,2019,1(11):1−9
|
[20] |
史海路, 刘华东, 魏新利等. 喷嘴距对喷射器及双蒸发压缩/喷射制冷系统性能的影响研究[J]. 高校化学工程学报,2019,33(02):321−328(in Chinese)
Shi Hailu, Liu Huadong, Wei Xinli, et al. Study on the influence of nozzle distance on the performance of ejector and double evaporation compression/jet refrigeration system[J]. Journal of Chemical Engineering in Universities,2019,33(02):321−328
|
[21] |
Chen H J, Zhu J H, Ge J, et al. A cylindrical mixing chamber ejector analysis model to predict the optimal nozzle exit position[J]. Energy,2020,208:118302 doi: 10.1016/j.energy.2020.118302
|
[22] |
Cagri M, Okan G, Ayşe Ugurcan A, et al. Numerical investigation of the flow structures inside mixing section of the ejector[J]. Energy,2018,166:1216−1228
|
[23] |
Nguyen V V, Varga S, Soares J, et al. Applying a variable geometry ejector in a solar ejector refrigeration system[J]. International Journal of Refrigeration,2020,113:187−195 doi: 10.1016/j.ijrefrig.2020.01.018
|
[24] |
Wang L, Liu J P, Zou T, et al. Auto-tuning ejector for refrigeration system[J]. Energy,2018,161:536−543 doi: 10.1016/j.energy.2018.07.110
|
[25] |
Han Y, Wang X D, Sun H, et al. CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance[J]. Energy,2019,167:469−483 doi: 10.1016/j.energy.2018.10.195
|
[26] |
Ramesh A, Sekhar J S. Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector[J]. Energy,2018,164:1097−1113 doi: 10.1016/j.energy.2018.09.010
|
[27] |
Ge J, Chen H J, Jin Y, et al. Conical-cylindrical mixer ejector design model for predicting optimal nozzle exit position[J]. Energy,2023,283:129190 doi: 10.1016/j.energy.2023.129190
|
[28] |
Ge J, Chen H J, Li J, et al. Experimental comparison of critical performance for variable geometry ejectors with different mixer structures[J]. Chemical Engineering Journal,2023,478:147487 doi: 10.1016/j.cej.2023.147487
|
[29] |
Giorgio B, Nicolò C, Lorenzo C, et al. Computational fluid-dynamics modelling of supersonic ejectors: screening of modelling approaches, comprehensive validation and assessment of ejector component efficiencies[J]. Applied Thermal Engineering,2020,186:116431
|
[30] |
Szabolcs V, João S, Rafael L, et al. On the selection of a turbulence model for the simulation of steam ejectors using CFD[J]. International Journal of Low-Carbon Technologies,2017,12(3):233−243 doi: 10.1093/ijlct/ctx007
|
[31] |
Chen H J, Zhu J H, Lu W. Optimized selection of one-and two-stage ejectors under design and off-design conditions[J]. Energy Conversion and Management,2018,173:743−752 doi: 10.1016/j.enconman.2018.06.113
|
[32] |
Sierra-Pallares J, Valle D G J, Carrascal G P, et al. A computational study about the types of entropy generation in three different R134a ejector mixing chambers[J]. International Journal of Refrigeration,2016,63:199−213 doi: 10.1016/j.ijrefrig.2015.11.007
|
[33] |
Herwig H, Kock F. Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems[J]. Heat and Mass Transfer,2007,43(3):207−215
|
[34] |
Sciacovelli A, Verda V, Sciubba E. Entropy generation analysis as a design tool—A review[J]. Renewable and Sustainable Energy Reviews,2015,43:1167−1181 doi: 10.1016/j.rser.2014.11.104
|
[35] |
Kock F, Herwig H. Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions[J]. International Journal of Heat and Mass Transfer,2004,47:2205−2215 doi: 10.1016/j.ijheatmasstransfer.2003.11.025
|
[36] |
ANSYS, ANSYS-FLUENT 15.0 User's Guide, 2013
|
[37] |
Petrovic A, Svorcan J, Pejcev A, et al. Comparison of novel variable area convergent-divergent nozzle performances obtained by analytic, computational and experimental methods[J]. Applied Mathematical Modelling,2018,57:206−225 doi: 10.1016/j.apm.2018.01.016
|