[1] Sun X, Yang Z, Wang X. Effect of fan outlet guide vane on the acoustic treatment design in aeroengine nacelle[J]. Journal of Sound & Vibration,2007,302(1-2):287−312
[2] Tian H, Huang Z, Wang C, et al. Optimal design of aeroengine turbine disc based on kriging surrogate models[J]. Computers & structures, 2011
[3] 赵传东, 李金燕, 张欢. 耐高温材料在航空发动机上的应用研究[J]. 内燃机与配件,2021(18):55−56(in chinese) Zhao Chuandong, Li Jinyan, Zhang Huan. Research on application of high temperature materials in aero-engine[J]. Internal Combustion Engine & Parts,2021(18):55−56
[4] Liu P S, Liang K M, Gu S R. High-temperature oxidation behavior of aluminide coatings on a new cobalt-base superalloy in air[J]. Corrosion Science,2001,43(7):1217−1226 doi: 10.1016/S0010-938X(00)00137-2
[5] 徐芳, 乐沛雯, 李寒松, 等. 第二代镍基单晶高温合金高温氧化行为及机制研究[J]. 稀有金属,2023,47(04):493−501(in chinese) Xu Fang, Yue Peiwen, Li Hansong, et al. Study on the high temperature oxidation behaviour and mechanism of second-generation nickel-based single-crystal high-temperature alloys[J]. CHINESE JOURNAL OF RARE METALS,2023,47(04):493−501
[6] 杨良会, 卢熠, 吴永安, 等. GH907环形锻件锻造工艺研究[J]. 锻造与冲压,2019(23):60−63(in chinese) Yang Lianghui, Lu Yi, Wu Yongan, et al. Study on forging process of GH907 ring forgings[J]. Forging& Metalforming,2019(23):60−63
[7] 韩光炜, 邓波, 杨玉军, 等. 海洋环境下不同低膨胀高温合金腐蚀抗力的比较研究[J]. 钢铁研究学报,2011,23(S2):21−24(in chinese) Han Guangwei, Deng Bo, Yang Yujun, et al. Comparison and research on corrosion resistance behavior of various low thermal expansion superalloys under simulated marine environment[J]. Journal of Iron and Steel Research,2011,23(S2):21−24
[8] 刘谨, 赵志毅. 异种高温合金板材电子束焊接及热处理后残余应力特征[J]. 材料热处理学报,2016,37(02):245−248(in chinese) Liu Jin, Zhao Zhiyi. Residual stress distribution of electron beam welded dissimilar superalloy sheet joints afterheat treatment[J]. Transactions of Materials and Heat Treatment,2016,37(02):245−248
[9] Pervaiz S, Rashid A, Deiab I, et al. Influence of tool materials on machinability of titanium- and nickel-based alloys: a review[J]. Advanced Manufacturing Processes,2014,29(3):219−252
[10] 董泽民, 陈伟, 刘璐璐, 等. 基于J-C模型的GH907高温合金动态本构关系及失效关系[J]. 机械工程材料,2021,45(10):43−49(in chinese) Dong Zemin, Chen Wei, Liu Lulu, et al. Dynamic constitutive relationship and failure relationship of GH907 superalloy based on J-C model[J]. Materials for Mechanical Engineering,2021,45(10):43−49
[11] 唐晓辉, 杨树林, 藏德昌, 等. GH907合金自由锻环形件混晶组织的分析及改进[J]. 热加工工艺,2015,44(07):141−144(in chinese) Tang Xiaohui, Yang Shulin, Zang Dechang, et al. Analysis and improvement of mixed crystal microstructure of GH907 alloy free forging ring parts[J]. Hot Working Technology,2015,44(07):141−144
[12] 赵宏璐, 王理, 韩振宇, 等. GH907合金防护涂层耐腐蚀性能研究[J]. 航空发动机,2011,37(02):43−46(in chinese) Zhao Honglu, Wang Li, Han Zhenyu, et al. Study on corrosion resistance performance of protective coatings for GH907 alloy[J]. Aeroengine,2011,37(02):43−46
[13] 李民, 程玉贤. 航空发动机用高温防护涂层研究进展[J]. 中国表面工程,2012,25(01):16−21(in chinese) Li Min, Cheng Yuxian. Progress in research on high temperature protective coatings for aero-engines[J]. China Surface Engineering,2012,25(01):16−21
[14] Li C J, Li W Y. Effect of sprayed powder particle size on the oxidation behavior of MCrAlY materials during high velocity oxygen-fuel deposition[J]. Surface & Coatings Technology,2003,162(1):31−41
[15] 周会会. 镍基高温合金用AlSi/AlSiY涂层抗高温氧化性能研究[J]. 涂料工业,2020,50(11):16−20(in chinese) doi: 10.12020/j.issn.0253-4312.2020.11.16 Zhou Huihui. Study on oxidation resistance of Al/AlSi/AlSiY diffused DZ125 coatings for high temperature Ni-base superalloy[J]. Paint & Coatings Industry,2020,50(11):16−20 doi: 10.12020/j.issn.0253-4312.2020.11.16
[16] 曹玉霞. 超音速火焰喷涂NiCoCrAlY/Al2O3复合涂层的抗氧化性能[J]. 金属热处理,2015,40(08):88−91(in chinese) Cao Yuxiao. Oxidation resistance of high velocity oxygen fuel sprayed NiCoCrAlY/Al2O3 composite coating[J]. Heat Treatment of Metals,2015,40(08):88−91
[17] 贾倩倩, 李德元, 李斌, 等. 钛表面Al/NiCr复合涂层改性反应机理及抗氧化性能[J]. 表面技术,2020,49(12):311−318+329(in chinese) Jia Qianqian, Li Deyuan, Li Bo, et al. Reaction mechanism and oxidation resistance of modified Al/NiCr composite coating on Ti[J]. Surface Technology,2020,49(12):311−318+329
[18] Seyring M, Wanierke F, Kaaden T, et al. Influence of natural oxide layers at Ni/NiAl interfaceson Ni3Al phase formation[J]. Materials Characterization,2021,174:111032 doi: 10.1016/j.matchar.2021.111032
[19] Schmidt J, Merkle A, Brendel R, et al. Surface passivation of high‐efficiency silicon solar cellsby atomic‐layer‐deposited Al2O3[J]. Progress in Photovoltaics: Research and Applications, 2008, 16(6)
[20] Wang Z, Liu X, Lv M, et al. Preparation of one-dimensional CoFe2O4 nanostructures and their magnetic properties[J]. The Journal of Physical Chemistry C, 2008, 112(39)
[21] Zhang K, Ning S, Ren C, et al. Improvement of oxidation resistance of spatial-network Al2O3/YSZ composite coatings by chemical densification[J]. Surface and Coatings Technology,2015,266:105−112 doi: 10.1016/j.surfcoat.2015.02.020
[22] Dillon A C, Ott A W, Way J D, et al. Surface chemistry of Al2O3 deposition using Al(CH3)3 and H2O in a binary reaction sequence[J]. SurfaceScience,2016,322(1-3):230−242
[23] 周立勋, 朱俊, 黄文, 等. BaTiO3/CoFe2O4/BaTiO3复合磁电薄膜生长及应力研究[J]. 真空科学与技术学报,2007(05):386−390(in chinese) doi: 10.3969/j.issn.1672-7126.2007.05.006 Zhou Lixun, Zhu Jun, Huang Wen, et al. Growth and interfacial strain of BaTiO3/CoFe2O4/BaTiO3 magnetoelectric multilayers[J]. Chinese Journal of Vacuum Science and Technology,2007(05):386−390 doi: 10.3969/j.issn.1672-7126.2007.05.006
[24] 朱富龙, 郁青春, 杨斌, 等. Fe2O3在氧化铝碳热还原−氯化法炼铝过程中的行为分析[J]. 真空科学与技术学报,2011,31(04):485−489(inchinese) doi: 10.3969/j.issn.1672-7126.2011.04.20 Zhu Fulong, Yu Qingchun, Yang Bin, et al. Behavior of Fe2O3 in Al extraction by alumina carbothermic reduction-chlorination in vacuums[J]. Chinese Journal of Vacuum Science and Technology,2011,31(04):485−489 doi: 10.3969/j.issn.1672-7126.2011.04.20
[25] Renusch D, Schorr M, M. Schütze. The role that bond coat depletion of aluminum has on the lifetime of APS‐TBC under oxidizing conditions[J]. Materials and Corrosion, 2008, 59(7)
[26] Berman R G. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2[J]. Journal of Petrology,1988(2):445−522
[27] Liu G Y, Liu J, Liu B, et al. Ketjen black carbon supported [emailprotected] NC nanochains as an efficient electrocatalyst for oxygen evolution[J]. International Journal of Hydrogen Energy,2018,43(51):22942−22948 doi: 10.1016/j.ijhydene.2018.10.142
[28] Ozkan W U S. Preparation of nanostructured nitrogen-containing carbon catalysts for the oxygen reduction reaction from SiO2− and MgO-supported metal particles[J]. Journal of Catalysis, 2006
[29] Tang F, Ajdelsztajn L, Kim G E, et al. Effects of surface oxidation during HVOF processing on the primary stage oxidation of a CoNiCrAlY coating[J]. Surface and Coatings Technology,2004,185(2-3):228−233 doi: 10.1016/j.surfcoat.2003.11.020